Approximation Theory Spline Functions And Applications

Download Approximation Theory Spline Functions And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approximation Theory Spline Functions And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Approximation Theory, Spline Functions and Applications

Author: S.P. Singh
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
These are the Proceedings of the NATO Advanced Study Institute on Approximation Theory, Spline Functions and Applications held in the Hotel villa del Mare, Maratea, Italy between April 28,1991 and May 9, 1991. The principal aim of the Advanced Study Institute, as reflected in these Proceedings, was to bring together recent and up-to-date developments of the subject, and to give directions for future research. Amongst the main topics covered during this Advanced Study Institute is the subject of uni variate and multivariate wavelet decomposition over spline spaces. This is a relatively new area in approximation theory and an increasingly impor tant subject. The work involves key techniques in approximation theory cardinal splines, B-splines, Euler-Frobenius polynomials, spline spaces with non-uniform knot sequences. A number of scientific applications are also highlighted, most notably applications to signal processing and digital im age processing. Developments in the area of approximation of functions examined in the course of our discussions include approximation of periodic phenomena over irregular node distributions, scattered data interpolation, Pade approximants in one and several variables, approximation properties of weighted Chebyshev polynomials, minimax approximations, and the Strang Fix conditions and their relation to radial functions. I express my sincere thanks to the members of the Advisory Commit tee, Professors B. Beauzamy, E. W. Cheney, J. Meinguet, D. Roux, and G. M. Phillips. My sincere appreciation and thanks go to A. Carbone, E. DePas cale, R. Charron, and B.
Spline Functions and Multivariate Interpolations

This volume provides a comprehensive introduction to the theory of spline functions. Emphasis is given to new developments, such as the general Birkhoff-type interpolation, the extremal properties of splines, their prominent role in the optimal recovery of functions, and multivariate interpolation by polynomials and splines. The book has thirteen chapters dealing, respectively, with interpolation by algebraic polynomials, the space of splines, B-splines, interpolation by spline functions, natural spline functions, perfect splines, monosplines, periodic splines, multivariate B-splines and truncated powers, multivariate spline functions and divided differences, box splines, multivariate mean value interpolation, multivariate polynomial interpolations arising by hyperplanes, and multivariate pointwise interpolation. Some of the results described are presented as exercises and hints are given for their solution. For researchers and graduate students whose work involves approximation theory.
Splines and PDEs: From Approximation Theory to Numerical Linear Algebra

This book takes readers on a multi-perspective tour through state-of-the-art mathematical developments related to the numerical treatment of PDEs based on splines, and in particular isogeometric methods. A wide variety of research topics are covered, ranging from approximation theory to structured numerical linear algebra. More precisely, the book provides (i) a self-contained introduction to B-splines, with special focus on approximation and hierarchical refinement, (ii) a broad survey of numerical schemes for control problems based on B-splines and B-spline-type wavelets, (iii) an exhaustive description of methods for computing and analyzing the spectral distribution of discretization matrices, and (iv) a detailed overview of the mathematical and implementational aspects of isogeometric analysis. The text is the outcome of a C.I.M.E. summer school held in Cetraro (Italy), July 2017, featuring four prominent lecturers with different theoretical and application perspectives. The book may serve both as a reference and an entry point into further research.