Spline Functions And Multivariate Interpolations


Download Spline Functions And Multivariate Interpolations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spline Functions And Multivariate Interpolations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Spline Functions and Multivariate Interpolations


Spline Functions and Multivariate Interpolations

Author: Borislav D. Bojanov

language: en

Publisher: Springer

Release Date: 1993-03-31


DOWNLOAD





This volume provides a comprehensive introduction to the theory of spline functions. Emphasis is given to new developments, such as the general Birkhoff-type interpolation, the extremal properties of splines, their prominent role in the optimal recovery of functions, and multivariate interpolation by polynomials and splines. The book has thirteen chapters dealing, respectively, with interpolation by algebraic polynomials, the space of splines, B-splines, interpolation by spline functions, natural spline functions, perfect splines, monosplines, periodic splines, multivariate B-splines and truncated powers, multivariate spline functions and divided differences, box splines, multivariate mean value interpolation, multivariate polynomial interpolations arising by hyperplanes, and multivariate pointwise interpolation. Some of the results described are presented as exercises and hints are given for their solution. For researchers and graduate students whose work involves approximation theory.

Spline Functions and Multivariate Interpolations


Spline Functions and Multivariate Interpolations

Author: Borislav D. Bojanov

language: en

Publisher: Springer

Release Date: 2014-03-14


DOWNLOAD





Spline functions entered Approximation Theory as solutions of natural extremal problems. A typical example is the problem of drawing a function curve through given n + k points that has a minimal norm of its k-th derivative. Isolated facts about the functions, now called splines, can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J. Favard, L. Tschakaloff. However, the Theory of Spline Functions has developed in the last 30 years by the effort of dozens of mathematicians. Recent fundamental results on multivariate polynomial interpolation and multivari ate splines have initiated a new wave of theoretical investigations and variety of applications. The purpose of this book is to introduce the reader to the theory of spline functions. The emphasis is given to some new developments, such as the general Birkoff's type interpolation, the extremal properties of the splines and their prominant role in the optimal recovery of functions, multivariate interpolation by polynomials and splines. The material presented is based on the lectures of the authors, given to the students at the University of Sofia and Yerevan University during the last 10 years. Some more elementary results are left as excercises and detailed hints are given.

Spline Functions and Multivariate Interpolations


Spline Functions and Multivariate Interpolations

Author: Borislav D. Bojanov

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-06-29


DOWNLOAD





Spline functions entered Approximation Theory as solutions of natural extremal problems. A typical example is the problem of drawing a function curve through given n + k points that has a minimal norm of its k-th derivative. Isolated facts about the functions, now called splines, can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J. Favard, L. Tschakaloff. However, the Theory of Spline Functions has developed in the last 30 years by the effort of dozens of mathematicians. Recent fundamental results on multivariate polynomial interpolation and multivari ate splines have initiated a new wave of theoretical investigations and variety of applications. The purpose of this book is to introduce the reader to the theory of spline functions. The emphasis is given to some new developments, such as the general Birkoff's type interpolation, the extremal properties of the splines and their prominant role in the optimal recovery of functions, multivariate interpolation by polynomials and splines. The material presented is based on the lectures of the authors, given to the students at the University of Sofia and Yerevan University during the last 10 years. Some more elementary results are left as excercises and detailed hints are given.