Python Advanced Predictive Analytics

Download Python Advanced Predictive Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Advanced Predictive Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Python: Advanced Predictive Analytics

Author: Joseph Babcock
language: en
Publisher: Packt Publishing Ltd
Release Date: 2017-12-27
Gain practical insights by exploiting data in your business to build advanced predictive modeling applications About This Book A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices Learn how to use popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering Master open source Python tools to build sophisticated predictive models Who This Book Is For This book is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move on from a conceptual understanding of advanced analytics and become an expert in designing and building advanced analytics solutions using Python. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about predictive analytics algorithms, this book will also help you. What You Will Learn Understand the statistical and mathematical concepts behind predictive analytics algorithms and implement them using Python libraries Get to know various methods for importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and NumPy Master the use of Python notebooks for exploratory data analysis and rapid prototyping Get to grips with applying regression, classification, clustering, and deep learning algorithms Discover advanced methods to analyze structured and unstructured data Visualize the performance of models and the insights they produce Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis In Detail Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form; it needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications. This book is your guide to getting started with predictive analytics using Python. You'll balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and NumPy. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates explains how these methods work. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring to life the insights of predictive modeling. Finally, you will learn best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. The course provides you with highly practical content from the following Packt books: 1. Learning Predictive Analytics with Python 2. Mastering Predictive Analytics with Python Style and approach This course aims to create a smooth learning path that will teach you how to effectively perform predictive analytics using Python. Through this comprehensive course, you'll learn the basics of predictive analytics and progress to predictive modeling in the modern world.
Advanced Data Science and Analytics with Python

Advanced Data Science and Analytics with Python enables data scientists to continue developing their skills and apply them in business as well as academic settings. The subjects discussed in this book are complementary and a follow-up to the topics discussed in Data Science and Analytics with Python. The aim is to cover important advanced areas in data science using tools developed in Python such as SciKit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX and others. The model development is supported by the use of frameworks such as Keras, TensorFlow and Core ML, as well as Swift for the development of iOS and MacOS applications. Features: Targets readers with a background in programming, who are interested in the tools used in data analytics and data science Uses Python throughout Presents tools, alongside solved examples, with steps that the reader can easily reproduce and adapt to their needs Focuses on the practical use of the tools rather than on lengthy explanations Provides the reader with the opportunity to use the book whenever needed rather than following a sequential path The book can be read independently from the previous volume and each of the chapters in this volume is sufficiently independent from the others, providing flexibility for the reader. Each of the topics addressed in the book tackles the data science workflow from a practical perspective, concentrating on the process and results obtained. The implementation and deployment of trained models are central to the book. Time series analysis, natural language processing, topic modelling, social network analysis, neural networks and deep learning are comprehensively covered. The book discusses the need to develop data products and addresses the subject of bringing models to their intended audiences – in this case, literally to the users’ fingertips in the form of an iPhone app. About the Author Dr. Jesús Rogel-Salazar is a lead data scientist in the field, working for companies such as Tympa Health Technologies, Barclays, AKQA, IBM Data Science Studio and Dow Jones. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK.
Learning Predictive Analytics with Python

Gain practical insights into predictive modelling by implementing Predictive Analytics algorithms on public datasets with Python About This Book A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices Get to grips with the basics of Predictive Analytics with Python Learn how to use the popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering Who This Book Is For If you wish to learn how to implement Predictive Analytics algorithms using Python libraries, then this is the book for you. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about Predictive Analytics algorithms, this book will also help you. The book will be beneficial to and can be read by any Data Science enthusiasts. Some familiarity with Python will be useful to get the most out of this book, but it is certainly not a prerequisite. What You Will Learn Understand the statistical and mathematical concepts behind Predictive Analytics algorithms and implement Predictive Analytics algorithms using Python libraries Analyze the result parameters arising from the implementation of Predictive Analytics algorithms Write Python modules/functions from scratch to execute segments or the whole of these algorithms Recognize and mitigate various contingencies and issues related to the implementation of Predictive Analytics algorithms Get to know various methods of importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and numpy Create dummy datasets and simple mathematical simulations using the Python numpy and pandas libraries Understand the best practices while handling datasets in Python and creating predictive models out of them In Detail Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. You'll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. Style and approach All the concepts in this book been explained and illustrated using a dataset, and in a step-by-step manner. The Python code snippet to implement a method or concept is followed by the output, such as charts, dataset heads, pictures, and so on. The statistical concepts are explained in detail wherever required.