Adaptive Filtering


Download Adaptive Filtering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Adaptive Filtering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Adaptive Filters


Adaptive Filters

Author: Ali H. Sayed

language: en

Publisher: Wiley-IEEE Press

Release Date: 2008-04-14


DOWNLOAD





"Adaptive Filters allows readers to gain a gradual and solid introduction to the subject, its applications to a variety of topical problems, existing limitations, and extensions of current theories. - This book will interest students, experts, practitioners and instructors."--BOOK JACKET.

Kernel Adaptive Filtering


Kernel Adaptive Filtering

Author: Weifeng Liu

language: en

Publisher: John Wiley & Sons

Release Date: 2011-09-20


DOWNLOAD





Online learning from a signal processing perspective There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters. Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm Presents a powerful model-selection method called maximum marginal likelihood Addresses the principal bottleneck of kernel adaptive filters—their growing structure Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site Concludes each chapter with a summary of the state of the art and potential future directions for original research Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.

Adaptive Filtering


Adaptive Filtering

Author: Paulo Sergio Ramirez Diniz

language: en

Publisher: Springer Science & Business Media

Release Date: 2002


DOWNLOAD





Adaptive Filtering: Algorithms and Practical Implementation, Second Edition, presents a concise overview of adaptive filtering, covering as many algorithms as possible in a unified form that avoids repetition and simplifies notation. It is suitable as a textbook for senior undergraduate or first-year graduate courses in adaptive signal processing and adaptive filters. The philosophy of the presentation is to expose the material with a solid theoretical foundation, to concentrate on algorithms that really work in a finite-precision implementation, and to provide easy access to working algorithms. Hence, practicing engineers and scientists will also find the book to be an excellent reference. This second edition contains a substantial amount of new material: -Two new chapters on nonlinear and subband adaptive filtering; -Linearly constrained Weiner filters and LMS algorithms; -LMS algorithm behavior in fast adaptation; -Affine projection algorithms; -Derivation smoothing; -MATLAB codes for algorithms. An instructor's manual, a set of master transparencies, and the MATLAB codes for all of the algorithms described in the text are also available. Useful to both professional researchers and students, the text includes 185 problems; over 38 examples, and over 130 illustrations. It is of primary interest to those working in signal processing, communications, and circuits and systems. It will also be of interest to those working in power systems, networks, learning systems, and intelligent systems.