Kernel Adaptive Filtering

Download Kernel Adaptive Filtering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Kernel Adaptive Filtering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Kernel Adaptive Filtering

Online learning from a signal processing perspective There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters. Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm Presents a powerful model-selection method called maximum marginal likelihood Addresses the principal bottleneck of kernel adaptive filters—their growing structure Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site Concludes each chapter with a summary of the state of the art and potential future directions for original research Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.
Digital Signal Processing with Kernel Methods

Author: Jose Luis Rojo-Alvarez
language: en
Publisher: John Wiley & Sons
Release Date: 2018-02-05
A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.
From Fixed to Adaptive Budget Robust Kernel Adaptive Filtering

Indeed the issue is how to deal with the trade-off between system complexity and accuracy performance, and an information learning criterion called Minimal Description Length (MDL) is introduced to kernel adaptive filtering. Two formulations of MDL: batch and online model are developed and illustrated by approximation level selection in KRLS-ALD and center dictionary selection in KLMS respectively. The end result is a methodology that controls the kernel adaptive filter dictionary (model order) according to the complexity of the true system and the input signal for online learning even in nonstationary environments.