What Kind Of Math Is Used In Data Science


Download What Kind Of Math Is Used In Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get What Kind Of Math Is Used In Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

15 Math Concepts Every Data Scientist Should Know


15 Math Concepts Every Data Scientist Should Know

Author: David Hoyle

language: en

Publisher: Packt Publishing Ltd

Release Date: 2024-08-16


DOWNLOAD





Create more effective and powerful data science solutions by learning when, where, and how to apply key math principles that drive most data science algorithms Key Features Understand key data science algorithms with Python-based examples Increase the impact of your data science solutions by learning how to apply existing algorithms Take your data science solutions to the next level by learning how to create new algorithms Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionData science combines the power of data with the rigor of scientific methodology, with mathematics providing the tools and frameworks for analysis, algorithm development, and deriving insights. As machine learning algorithms become increasingly complex, a solid grounding in math is crucial for data scientists. David Hoyle, with over 30 years of experience in statistical and mathematical modeling, brings unparalleled industrial expertise to this book, drawing from his work in building predictive models for the world's largest retailers. Encompassing 15 crucial concepts, this book covers a spectrum of mathematical techniques to help you understand a vast range of data science algorithms and applications. Starting with essential foundational concepts, such as random variables and probability distributions, you’ll learn why data varies, and explore matrices and linear algebra to transform that data. Building upon this foundation, the book spans general intermediate concepts, such as model complexity and network analysis, as well as advanced concepts such as kernel-based learning and information theory. Each concept is illustrated with Python code snippets demonstrating their practical application to solve problems. By the end of the book, you’ll have the confidence to apply key mathematical concepts to your data science challenges.What you will learn Master foundational concepts that underpin all data science applications Use advanced techniques to elevate your data science proficiency Apply data science concepts to solve real-world data science challenges Implement the NumPy, SciPy, and scikit-learn concepts in Python Build predictive machine learning models with mathematical concepts Gain expertise in Bayesian non-parametric methods for advanced probabilistic modeling Acquire mathematical skills tailored for time-series and network data types Who this book is for This book is for data scientists, machine learning engineers, and data analysts who already use data science tools and libraries but want to learn more about the underlying math. Whether you’re looking to build upon the math you already know, or need insights into when and how to adopt tools and libraries to your data science problem, this book is for you. Organized into essential, general, and selected concepts, this book is for both practitioners just starting out on their data science journey and experienced data scientists.

Advanced Mathematical Applications in Data Science


Advanced Mathematical Applications in Data Science

Author: Biswadip Basu Mallik

language: en

Publisher: Bentham Science Publishers

Release Date: 2023-08-24


DOWNLOAD





Advanced Mathematical Applications in Data Science comprehensively explores the crucial role mathematics plays in the field of data science. Each chapter is contributed by scientists, researchers, and academicians. The 13 chapters cover a range of mathematical concepts utilized in data science, enabling readers to understand the intricate connection between mathematics and data analysis. The book covers diverse topics, including, machine learning models, the Kalman filter, data modeling, artificial neural networks, clustering techniques, and more, showcasing the application of advanced mathematical tools for effective data processing and analysis. With a strong emphasis on real-world applications, the book offers a deeper understanding of the foundational principles behind data analysis and its numerous interdisciplinary applications. This reference is an invaluable resource for graduate students, researchers, academicians, and learners pursuing a research career in mathematical computing or completing advanced data science courses. Key Features: Comprehensive coverage of advanced mathematical concepts and techniques in data science Contributions from established scientists, researchers, and academicians Real-world case studies and practical applications of mathematical methods Focus on diverse areas, such as image classification, carbon emission assessment, customer churn prediction, and healthcare data analysis In-depth exploration of data science's connection with mathematics, computer science, and artificial intelligence Scholarly references for each chapter Suitable for readers with high school-level mathematical knowledge, making it accessible to a broad audience in academia and industry.

Math for Data Science


Math for Data Science

Author: Omar Hijab

language: en

Publisher: Springer Nature

Release Date: 2025-05-26


DOWNLOAD





Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability. Clear examples are supported with detailed figures and Python code; Jupyter notebooks and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level.