Math For Data Science

Download Math For Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Math For Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Essential Math for Data Science

Author: Thomas Nield
language: en
Publisher: "O'Reilly Media, Inc."
Release Date: 2022-05-26
Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. Learn how to: Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance Manipulate vectors and matrices and perform matrix decomposition Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market
Math for Data Science

Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability. Clear examples are supported with detailed figures and Python code; Jupyter notebooks and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level.
Essential Math for Data Science

Author: Thomas Nield
language: en
Publisher: "O'Reilly Media, Inc."
Release Date: 2022-05-26
Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. Learn how to: Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance Manipulate vectors and matrices and perform matrix decomposition Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market