Advanced Mathematical Applications In Data Science

Download Advanced Mathematical Applications In Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Mathematical Applications In Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advanced Mathematical Applications in Data Science

Author: Kirti Verma
language: en
Publisher: Bentham Science Publishers
Release Date: 2023-08-24
Advanced Mathematical Applications in Data Science comprehensively explores the crucial role mathematics plays in the field of data science. Each chapter is contributed by scientists, researchers, and academicians. The 13 chapters cover a range of mathematical concepts utilized in data science, enabling readers to understand the intricate connection between mathematics and data analysis. The book covers diverse topics, including, machine learning models, the Kalman filter, data modeling, artificial neural networks, clustering techniques, and more, showcasing the application of advanced mathematical tools for effective data processing and analysis. With a strong emphasis on real-world applications, the book offers a deeper understanding of the foundational principles behind data analysis and its numerous interdisciplinary applications. This reference is an invaluable resource for graduate students, researchers, academicians, and learners pursuing a research career in mathematical computing or completing advanced data science courses. Key Features: -Comprehensive coverage of advanced mathematical concepts and techniques in data science. -Contributions from established scientists, researchers, and academicians. -Real-world case studies and practical applications of mathematical methods. -Focus on diverse areas, such as image classification, carbon emission assessment, customer churn prediction, and healthcare data analysis. -In-depth exploration of data science's connection with mathematics, computer science, and artificial intelligence. -Scholarly references for each chapter. -Suitable for readers with high school-level mathematical knowledge, making it accessible to a broad audience in academia and industry.
Advanced Mathematical Applications in Data Science

Author: Biswadip Basu Mallik
language: en
Publisher: Bentham Science Publishers
Release Date: 2023-08-24
Advanced Mathematical Applications in Data Science comprehensively explores the crucial role mathematics plays in the field of data science. Each chapter is contributed by scientists, researchers, and academicians. The 13 chapters cover a range of mathematical concepts utilized in data science, enabling readers to understand the intricate connection between mathematics and data analysis. The book covers diverse topics, including, machine learning models, the Kalman filter, data modeling, artificial neural networks, clustering techniques, and more, showcasing the application of advanced mathematical tools for effective data processing and analysis. With a strong emphasis on real-world applications, the book offers a deeper understanding of the foundational principles behind data analysis and its numerous interdisciplinary applications. This reference is an invaluable resource for graduate students, researchers, academicians, and learners pursuing a research career in mathematical computing or completing advanced data science courses. Key Features: Comprehensive coverage of advanced mathematical concepts and techniques in data science Contributions from established scientists, researchers, and academicians Real-world case studies and practical applications of mathematical methods Focus on diverse areas, such as image classification, carbon emission assessment, customer churn prediction, and healthcare data analysis In-depth exploration of data science's connection with mathematics, computer science, and artificial intelligence Scholarly references for each chapter Suitable for readers with high school-level mathematical knowledge, making it accessible to a broad audience in academia and industry.
Mathematical Problems in Data Science

This book describes current problems in data science and Big Data. Key topics are data classification, Graph Cut, the Laplacian Matrix, Google Page Rank, efficient algorithms, hardness of problems, different types of big data, geometric data structures, topological data processing, and various learning methods. For unsolved problems such as incomplete data relation and reconstruction, the book includes possible solutions and both statistical and computational methods for data analysis. Initial chapters focus on exploring the properties of incomplete data sets and partial-connectedness among data points or data sets. Discussions also cover the completion problem of Netflix matrix; machine learning method on massive data sets; image segmentation and video search. This book introduces software tools for data science and Big Data such MapReduce, Hadoop, and Spark. This book contains three parts. The first part explores the fundamental tools of data science. It includes basic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematical image and video processing, topological data analysis, and statistical methods. The final section provides case studies on special topics in variational learning, manifold learning, business and financial data rec overy, geometric search, and computing models. Mathematical Problems in Data Science is a valuable resource for researchers and professionals working in data science, information systems and networks. Advanced-level students studying computer science, electrical engineering and mathematics will also find the content helpful.