Off Shell Applications In Nanophotonics

Download Off Shell Applications In Nanophotonics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Off Shell Applications In Nanophotonics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Off-Shell Applications in Nanophotonics

Off-shell science deals with the quantum field in which the dispersion relation between energy and momentum is invalid. A typical example of such the quantum field is the dressed photon (DP) that creates by the interaction among photons, electrons, and phonons in a nano-particle. This field is complementary to the on-shell quantum field (photons in a macroscopic space). Off-Shell Applications in Nanophotonics: Dressed Photon Science and Technology reviews the experimental/theoretical studies and shows the route that should be taken to establish off-shell science in the future. A variety of phenomena originate from the DP, and phenomena analogous to them have been found among physical, chemical, and biological phenomena. This indicates that off-shell quantum fields are universal and essential constituent elements of nature. By noting this, readers will be able to use off-shell science to develop new technologies. This book presents i) the reasons why the off-shell scientific theory is required, ii) the nature of the dressed photon by presenting experimental results, iii) tentative theoretical description of the dressed photon, iv) disruptive innovations (nano-optical devices, nano-fabrication technology, energy conversion technology, and silicon light-emitting diodes/lasers), and v) genuine theoretical approaches (based on spatio-temporal vortex hydrodynamics, quantum probability, quantum measurement, and micro-macro duality). It will appeal to materials scientists, engineers and physicists working in the areas of optics and photonics. - Explains the fundamental concepts behind off-shell science, and how it differs from traditional nanophotonics - Presents a range of simulation models demonstrating major off-shell models - Assesses the major challenges for researchers wanting to employ off-shell-based experimental techniques
Dressed Photons to Revolutionize Modern Physics

This book presents an in-depth review of the recent interdisciplinary studies that have shed light on the mechanisms of the creation, energy transfer, and measurement of the dressed photon. A dressed photon is a type of photon that results from the interaction between light and matter in a confined space, typically on the scale of nanometers. It has been applied to nano-fabrication technologies, energy conversion technologies, and silicon light-emitting devices. Despite its extensive applications in various fields, the dressed photon's off-shell nature has posed challenges in describing it through conventional optical scientific theories. The book explains how, through a mathematical viewpoint, the underlying spatiotemporal vortex dynamics connect the dressed photon, the dark energy field, and the structure of the universe. The canonical equations of motion, which describe the time evolution of dynamical systems with Hamiltonian structure, play a key role in understanding these physical phenomena. In particular, the covariant form of equations of motion, where vortex tensors explicitly appear, corresponds to the transformed canonical equations of motion in the Eulerian representation. This newly augmented view of the equations of motion presents a deeper understanding of the interconnectedness of different physical phenomena, which can enlighten graduate students, junior scientists, and industry engineers engaged or interested in this field.
Fundamentals and Applications of Nanophotonics

Author: Joseph W. Haus
language: en
Publisher: Woodhead Publishing
Release Date: 2016-01-09
Fundamentals and Applications of Nanophotonics includes a comprehensive discussion of the field of nanophotonics, including key enabling technologies that have the potential to drive economic growth and impact numerous application domains such as ICT, the environment, healthcare, military, transport, manufacturing, and energy. This book gives readers the theoretical underpinnings needed to understand the latest advances in the field. After an introduction to the area, chapters two and three cover the essential topics of electrodynamics, quantum mechanics, and computation as they relate to nanophotonics. Subsequent chapters explore materials for nanophotonics, including nanoparticles, photonic crystals, nanosilicon, nanocarbon, III-V, and II-VI semiconductors. In addition, fabrication and characterization techniques are addressed, along with the importance of plasmonics, and the applications of nanophotonics in devices such as lasers, LEDs, and photodetectors. - Covers electrodynamics, quantum mechanics and computation as these relate to nanophotonics - Reviews materials, fabrication and characterization techniques for nanophotonics - Describes applications of the technology such as lasers, LEDs and photodetectors