Fundamentals And Applications Of Nanophotonics

Download Fundamentals And Applications Of Nanophotonics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals And Applications Of Nanophotonics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fundamentals and Applications of Nanophotonics

Author: Joseph W. Haus
language: en
Publisher: Woodhead Publishing
Release Date: 2016-01-09
Fundamentals and Applications of Nanophotonics includes a comprehensive discussion of the field of nanophotonics, including key enabling technologies that have the potential to drive economic growth and impact numerous application domains such as ICT, the environment, healthcare, military, transport, manufacturing, and energy. This book gives readers the theoretical underpinnings needed to understand the latest advances in the field. After an introduction to the area, chapters two and three cover the essential topics of electrodynamics, quantum mechanics, and computation as they relate to nanophotonics. Subsequent chapters explore materials for nanophotonics, including nanoparticles, photonic crystals, nanosilicon, nanocarbon, III-V, and II-VI semiconductors. In addition, fabrication and characterization techniques are addressed, along with the importance of plasmonics, and the applications of nanophotonics in devices such as lasers, LEDs, and photodetectors. - Covers electrodynamics, quantum mechanics and computation as these relate to nanophotonics - Reviews materials, fabrication and characterization techniques for nanophotonics - Describes applications of the technology such as lasers, LEDs and photodetectors
Fundamentals and Applications of Nonlinear Nanophotonics

Fundamentals and Applications of Nonlinear Nanophotonics includes key concepts of nonlinear nanophotonics, computational and modeling techniques to design these materials, and the latest advances. This book addresses the scientific literature on nanophotonics while most existing books focus almost exclusively on the linear aspects of light-matter interaction at the nanoscale. Sections cover nonlinear optics of sub-wavelength photonic nanostructured materials, review nonlinear optics of bound-states in the continuum, nonlinear optics of chiral plasmonic metasurfaces, nonlinear hyperbolic nanomaterials, nonlinear topological photonics, plasmonic lattice solitons, and more. This book is suitable for academics and industry professionals working in the discipline of materials science, engineering and nanotechnology. - Discusses advances in nonlinear optics research such as plasmonics, topological photonics and emerging materials - Reviews the latest computational methods to model and design nonlinear photonic materials - Introduces key principles of advanced concepts in nonlinear optics of bound-states in a continuum and symmetries in nonlinear nano-optics
Integrated Nanophotonic Resonators

The rapid advancement of integrated optoelectronics has been driven considerably by miniaturization. Following the path taken in electronics of reducing devices to their ultimately fundamental forms, for instance single-electron transistors, now optical devices have also been scaled down, creating the increasingly active research fields of integrated and coupled photonic system. Recently, integrated micro-/nanophotonic/electronic/mechanical resonator has seen widespread applications in biomedicine, telecommunications, sensing/detection, security, solid-state lighting, and renewable energy. The interactions between the coupled integrated micro- and nanostructures can provide us fundamental understanding and engineering of the complex systems for a variety of applications. The book aims to bring to the readers the latest developments in this rapidly emerging field. It compiles cutting-edge research from leading experts in this exciting field who form an interdisciplinary team around the world. The book also introduces fundamental knowledge on coupled integrated photonic/electronic/mechanical micro-/nanoresonators and their interactions, as well as cutting-edge research and latest developments in the field.