Fundamentals And Applications Of Nonlinear Nanophotonics

Download Fundamentals And Applications Of Nonlinear Nanophotonics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals And Applications Of Nonlinear Nanophotonics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fundamentals and Applications of Nonlinear Nanophotonics

Fundamentals and Applications of Nonlinear Nanophotonics includes key concepts of nonlinear nanophotonics, computational and modeling techniques to design these materials, and the latest advances. This book addresses the scientific literature on nanophotonics while most existing books focus almost exclusively on the linear aspects of light-matter interaction at the nanoscale. Sections cover nonlinear optics of sub-wavelength photonic nanostructured materials, review nonlinear optics of bound-states in the continuum, nonlinear optics of chiral plasmonic metasurfaces, nonlinear hyperbolic nanomaterials, nonlinear topological photonics, plasmonic lattice solitons, and more. This book is suitable for academics and industry professionals working in the discipline of materials science, engineering and nanotechnology. - Discusses advances in nonlinear optics research such as plasmonics, topological photonics and emerging materials - Reviews the latest computational methods to model and design nonlinear photonic materials - Introduces key principles of advanced concepts in nonlinear optics of bound-states in a continuum and symmetries in nonlinear nano-optics
Fundamentals and Applications of Nanophotonics

Author: Joseph W. Haus
language: en
Publisher: Woodhead Publishing
Release Date: 2016-01-09
Fundamentals and Applications of Nanophotonics includes a comprehensive discussion of the field of nanophotonics, including key enabling technologies that have the potential to drive economic growth and impact numerous application domains such as ICT, the environment, healthcare, military, transport, manufacturing, and energy. This book gives readers the theoretical underpinnings needed to understand the latest advances in the field. After an introduction to the area, chapters two and three cover the essential topics of electrodynamics, quantum mechanics, and computation as they relate to nanophotonics. Subsequent chapters explore materials for nanophotonics, including nanoparticles, photonic crystals, nanosilicon, nanocarbon, III-V, and II-VI semiconductors. In addition, fabrication and characterization techniques are addressed, along with the importance of plasmonics, and the applications of nanophotonics in devices such as lasers, LEDs, and photodetectors. - Covers electrodynamics, quantum mechanics and computation as these relate to nanophotonics - Reviews materials, fabrication and characterization techniques for nanophotonics - Describes applications of the technology such as lasers, LEDs and photodetectors
Organic Nanophotonics

This comprehensive text collects the progress made in recent years in the fabrication, processing, and performance of organic nanophotonic materials and devices. The first part of the book addresses photonic nanofabrications in a chapter on multiphoton processes in nanofabrication and microscopy imaging. The second part of the book is focused on nanoscale light sources for integrated nanophotonic circuits, and is composed of three chapters on organic nano/microcavities, organic laser materials, and polymer light-emitting electrochemical cells (LECs). The third part is focused on the interactions between light and matter and consists in three chapters, including the propagation of light in organic nanostructures and photoswitches based on nonlinear optical polymer photonic crystals and photoresponsive molecules, respectively. The final chapter of this book introduces the integration of miniaturized photonic devices and circuits with various organic nanophotonic elements. The practical case studies demonstrate how the latest applications actually work, while tables throughout the book summarize key information and diagrams and figures help readers to grasp complex concepts and designs. The references at the end of each chapter can be used as the gateway to the relevant literature in the field. Moreover, this book helps researchers to advance their own investigations to develop the next generation of miniaturized devices for information processing, efficient energy conversion, and highly accurate sensing. Yong Sheng Zhao, PhD, is a Professor at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), China.