New Lagrangian And Hamiltonian Methods In Field Theory

Download New Lagrangian And Hamiltonian Methods In Field Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get New Lagrangian And Hamiltonian Methods In Field Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
New Lagrangian and Hamiltonian Methods in Field Theory

This book incorporates 3 modern aspects of mathematical physics: the jet methods in differential geometry, Lagrangian formalism on jet manifolds and the multimomentum approach to Hamiltonian formalism. Several contemporary field models are investigated in detail.This is not a book on differential geometry. However, modern concepts of differential geometry such as jet manifolds and connections are used throughout the book. Quadratic Lagrangians and Hamiltonians are studied at the general level including a treatment of Hamiltonian formalism on composite fiber manifolds. The book presents new geometric methods and results in field theory.
New Lagrangian And Hamiltonian Methods In Field Theory

Author: Giovanni Giachetta
language: en
Publisher: World Scientific
Release Date: 1997-12-18
This book incorporates 3 modern aspects of mathematical physics: the jet methods in differential geometry, Lagrangian formalism on jet manifolds and the multimomentum approach to Hamiltonian formalism. Several contemporary field models are investigated in detail.This is not a book on differential geometry. However, modern concepts of differential geometry such as jet manifolds and connections are used throughout the book. Quadratic Lagrangians and Hamiltonians are studied at the general level including a treatment of Hamiltonian formalism on composite fiber manifolds. The book presents new geometric methods and results in field theory.
Generalized Hamiltonian Formalism for Field Theory

In the framework of the geometric formulation of field theory, classical fields are represented by sections of fibred manifolds, and their dynamics is phrased in jet manifold terms. The Hamiltonian formalism in fibred manifolds is the multisymplectic generalization of the Hamiltonian formalism in mechanics when canonical momenta correspond to derivatives of fields with respect to all world coordinates, not only to time. This book is devoted to the application of this formalism to fundamental field models including gauge theory, gravitation theory, and spontaneous symmetry breaking. All these models are constraint ones. Their Euler-Lagrange equations are underdetermined and need additional conditions. In the Hamiltonian formalism, these conditions appear automatically as a part of the Hamilton equations, corresponding to different Hamiltonian forms associated with a degenerate Lagrangian density. The general procedure for describing constraint systems with quadratic and affine Lagrangian densities is presented.