Generalized Hamiltonian Formalism For Field Theory

Download Generalized Hamiltonian Formalism For Field Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generalized Hamiltonian Formalism For Field Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Generalized Hamiltonian Formalism for Field Theory

In the framework of the geometric formulation of field theory, classical fields are represented by sections of fibred manifolds, and their dynamics is phrased in jet manifold terms. The Hamiltonian formalism in fibred manifolds is the multisymplectic generalization of the Hamiltonian formalism in mechanics when canonical momenta correspond to derivatives of fields with respect to all world coordinates, not only to time. This book is devoted to the application of this formalism to fundamental field models including gauge theory, gravitation theory, and spontaneous symmetry breaking. All these models are constraint ones. Their Euler-Lagrange equations are underdetermined and need additional conditions. In the Hamiltonian formalism, these conditions appear automatically as a part of the Hamilton equations, corresponding to different Hamiltonian forms associated with a degenerate Lagrangian density. The general procedure for describing constraint systems with quadratic and affine Lagrangian densities is presented.
Generalized Hamiltonian Formalism For Field Theory: Constraint Systems

Author: Gennadi A Sardanashvily
language: en
Publisher: World Scientific
Release Date: 1995-11-15
In the framework of the geometric formulation of field theory, classical fields are represented by sections of fibred manifolds, and their dynamics is phrased in jet manifold terms. The Hamiltonian formalism in fibred manifolds is the multisymplectic generalization of the Hamiltonian formalism in mechanics when canonical momenta correspond to derivatives of fields with respect to all world coordinates, not only to time. This book is devoted to the application of this formalism to fundamental field models including gauge theory, gravitation theory, and spontaneous symmetry breaking. All these models are constraint ones. Their Euler-Lagrange equations are underdetermined and need additional conditions. In the Hamiltonian formalism, these conditions appear automatically as a part of the Hamilton equations, corresponding to different Hamiltonian forms associated with a degenerate Lagrangian density. The general procedure for describing constraint systems with quadratic and affine Lagrangian densities is presented.
Methods Of Differential Geometry In Classical Field Theories: K-symplectic And K-cosymplectic Approaches

This book is devoted to review two of the most relevant approaches to the study of classical field theories of the first order, say k-symplectic and k-cosymplectic geometry. This approach is also compared with others like multisymplectic formalism.It will be very useful for researchers working in classical field theories and graduate students interested in developing a scientific career in the subject.