Neural Advances In Processing Nonlinear Dynamic Signals

Download Neural Advances In Processing Nonlinear Dynamic Signals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Advances In Processing Nonlinear Dynamic Signals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Neural Advances in Processing Nonlinear Dynamic Signals

This book proposes neural networks algorithms and advanced machine learning techniques for processing nonlinear dynamic signals such as audio, speech, financial signals, feedback loops, waveform generation, filtering, equalization, signals from arrays of sensors, and perturbations in the automatic control of industrial production processes. It also discusses the drastic changes in financial, economic, and work processes that are currently being experienced by the computational and engineering sciences community. Addresses key aspects, such as the integration of neural algorithms and procedures for the recognition, the analysis and detection of dynamic complex structures and the implementation of systems for discovering patterns in data, the book highlights the commonalities between computational intelligence (CI) and information and communications technologies (ICT) to promote transversal skills and sophisticated processing techniques. This book is a valuable resource for a. The academic research community b. The ICT market c. PhD students and early stage researchers d. Companies, research institutes e. Representatives from industry and standardization bodies
Advances in Cardiac Signal Processing

Author: U. Rajendra Acharya
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-04-25
This book provides a comprehensive review of progress in the acquisition and extraction of electrocardiogram signals. The coverage is extensive, from a review of filtering techniques to measurement of heart rate variability, to aortic pressure measurement, to strategies for assessing contractile effort of the left ventricle and more. The book concludes by assessing the future of cardiac signal processing, leading to next generation research which directly impact cardiac health care.
Concept of Adaptive Filtering

A spline adaptive filter (SAF) based nonlinear active noise control (ANC) system is proposed in this paper. The SAF consists of a linear network of adaptive weights in a cascade with an adaptive nonlinear network. The nonlinear network, in turn consists of an adaptive look-up table followed by a spline interpolation network and forms an adaptive activation function. An update rule has been derived for the proposed ANC system, which not only updates the weights of the linear network, but also updates the nature of the activation function. Linear Network is based on improvement in FxLMS algorithm. FxLMS algorithm is used because it is computationally simple like the most commonly used Least Mean Square (LMS) algorithm. In addition, it includes secondary path effects. To make the FxLMS algorithm more effective, the secondary path estimation should be more precise and accurate. The nonlinear function involved in the adaptation process is based on a spline function that can be modified during learning. The spline control points are adaptively changed using gradient-based techniques. B-splines and Catmull-Rom splines are used, because they allow imposing simple constraints on control parameters. This new kind of adaptive function is then applied to the output of a linear adaptive filter and it is used for the identification of Wiener-type nonlinear systems. In addition, we derive a simple form of the adaptation algorithm and an upper bound on the choice of the step-size. An extensive simulation study has been conducted to evaluate the noise mitigation performance of the proposed scheme and the new method has been shown to provide improved noise cancellation efficiency with a lesser computational load in comparison with other popular ANC systems.