Measure Valued Branching Markov Processes

Download Measure Valued Branching Markov Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Measure Valued Branching Markov Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Measure-Valued Branching Markov Processes

This book provides a compact introduction to the theory of measure-valued branching processes, immigration processes and Ornstein–Uhlenbeck type processes. Measure-valued branching processes arise as high density limits of branching particle systems. The first part of the book gives an analytic construction of a special class of such processes, the Dawson–Watanabe superprocesses, which includes the finite-dimensional continuous-state branching process as an example. Under natural assumptions, it is shown that the superprocesses have Borel right realizations. Transformations are then used to derive the existence and regularity of several different forms of the superprocesses. This technique simplifies the constructions and gives useful new perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The second part investigates immigration structures associated with the measure-valued branching processes. The structures are formulated by skew convolution semigroups, which are characterized in terms of infinitely divisible probability entrance laws. A theory of stochastic equations for one-dimensional continuous-state branching processes with or without immigration is developed, which plays a key role in the construction of measure flows of those processes. The third part of the book studies a class of Ornstein-Uhlenbeck type processes in Hilbert spaces defined by generalized Mehler semigroups, which arise naturally in fluctuation limit theorems of the immigration superprocesses. This volume is aimed at researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.
An Introduction to Superprocesses

Author: Alison Etheridge
language: en
Publisher: American Mathematical Soc.
Release Date: 2000
Over the past 20 years, the study of superprocesses has expanded into a major industry and can now be regarded as a central theme in modern probability theory. This book is intended as a rapid introduction to the subject, geared toward graduate students and researchers in stochastic analysis. A variety of different approaches to the superprocesses emerged over the last ten years. Yet no one approach superseded any others. In this book, readers are exposed to a number of different ways of thinking about the processes, and each is used to motivate some key results. The emphasis is on why results are true rather than on rigorous proof. Specific results are given, including extensive references to current literature for their general form.
Fractal Geometry and Stochastics IV

Author: Christoph Bandt
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-01-08
Over the last fifteen years fractal geometry has established itself as a substantial mathematical theory in its own right. The interplay between fractal geometry, analysis and stochastics has highly influenced recent developments in mathematical modeling of complicated structures. This process has been forced by problems in these areas related to applications in statistical physics, biomathematics and finance. This book is a collection of survey articles covering many of the most recent developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals. The authors were the keynote speakers at the conference "Fractal Geometry and Stochastics IV" at Greifswald in September 2008.