Mathematical Cryptology For Computer Scientists And Mathematicians

Download Mathematical Cryptology For Computer Scientists And Mathematicians PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Cryptology For Computer Scientists And Mathematicians book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematical Cryptology for Computer Scientists and Mathematicians

Author: Wayne Patterson
language: en
Publisher: Rowman & Littlefield Publishers
Release Date: 1987
The author includes not only information about the most important advances in the field of cryptology of the past decade-such as the Data Encryption Standard (DES), public-key cryptology, and the RSA algorithm-but also the research results of the last three years: the Shamir, the Lagarias-Odlyzko, and the Brickell attacks on the Knapsack methods; the new Knapsack method using Galois fields by Chor and Rivest; and the recent analysis by Kaliski, Rivest, and Sherman of group-theoretic properties of the Data Encryption Standard (DES).
An Introduction to Mathematical Cryptography

Author: Jeffrey Hoffstein
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-12-15
An Introduction to Mathematical Cryptography provides an introduction to public key cryptography and underlying mathematics that is required for the subject. Each of the eight chapters expands on a specific area of mathematical cryptography and provides an extensive list of exercises. It is a suitable text for advanced students in pure and applied mathematics and computer science, or the book may be used as a self-study. This book also provides a self-contained treatment of mathematical cryptography for the reader with limited mathematical background.
Fundamentals of Cryptology

Author: Henk C.A. van Tilborg
language: en
Publisher: Springer Science & Business Media
Release Date: 1999-12-31
The protection of sensitive information against unauthorized access or fraudulent changes has been of prime concern throughout the centuries. Modern communication techniques, using computers connected through networks, make all data even more vulnerable for these threats. Also, new issues have come up that were not relevant before, e. g. how to add a (digital) signature to an electronic document in such a way that the signer can not deny later on that the document was signed by him/her. Cryptology addresses the above issues. It is at the foundation of all information security. The techniques employed to this end have become increasingly mathematical of nature. This book serves as an introduction to modern cryptographic methods. After a brief survey of classical cryptosystems, it concentrates on three main areas. First of all, stream ciphers and block ciphers are discussed. These systems have extremely fast implementations, but sender and receiver have to share a secret key. Public key cryptosystems (the second main area) make it possible to protect data without a prearranged key. Their security is based on intractable mathematical problems, like the factorization of large numbers. The remaining chapters cover a variety of topics, such as zero-knowledge proofs, secret sharing schemes and authentication codes. Two appendices explain all mathematical prerequisites in great detail. One is on elementary number theory (Euclid's Algorithm, the Chinese Remainder Theorem, quadratic residues, inversion formulas, and continued fractions). The other appendix gives a thorough introduction to finite fields and their algebraic structure.