Introduction To Learning Classifier Systems


Download Introduction To Learning Classifier Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Learning Classifier Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Learning Classifier Systems


Introduction to Learning Classifier Systems

Author: Ryan J. Urbanowicz

language: en

Publisher: Springer

Release Date: 2017-08-17


DOWNLOAD





This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, and then walk through the components of LCS that form this rule-based evolutionary algorithm. The applicability and adaptability of these methods is highlighted by providing descriptions of common methodological alternatives for different components that are suited to different types of problems from data mining to autonomous robotics. The authors have also paired exercises and a simple educational LCS (eLCS) algorithm (implemented in Python) with this book. It is suitable for courses or self-study by advanced undergraduate and postgraduate students in subjects such as Computer Science, Engineering, Bioinformatics, and Cybernetics, and by researchers, data analysts, and machine learning practitioners.

Anticipatory Learning Classifier Systems


Anticipatory Learning Classifier Systems

Author: Martin V. Butz

language: en

Publisher: Springer Science & Business Media

Release Date: 2002-01-31


DOWNLOAD





Anticipatory Learning Classifier Systems describes the state of the art of anticipatory learning classifier systems-adaptive rule learning systems that autonomously build anticipatory environmental models. An anticipatory model specifies all possible action-effects in an environment with respect to given situations. It can be used to simulate anticipatory adaptive behavior. Anticipatory Learning Classifier Systems highlights how anticipations influence cognitive systems and illustrates the use of anticipations for (1) faster reactivity, (2) adaptive behavior beyond reinforcement learning, (3) attentional mechanisms, (4) simulation of other agents and (5) the implementation of a motivational module. The book focuses on a particular evolutionary model learning mechanism, a combination of a directed specializing mechanism and a genetic generalizing mechanism. Experiments show that anticipatory adaptive behavior can be simulated by exploiting the evolving anticipatory model for even faster model learning, planning applications, and adaptive behavior beyond reinforcement learning. Anticipatory Learning Classifier Systems gives a detailed algorithmic description as well as a program documentation of a C++ implementation of the system.

Introduction to Evolutionary Computing


Introduction to Evolutionary Computing

Author: A.E. Eiben

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-08-06


DOWNLOAD





The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.