Dynamic Stability And Bifurcation In Nonconservative Mechanics


Download Dynamic Stability And Bifurcation In Nonconservative Mechanics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Stability And Bifurcation In Nonconservative Mechanics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Dynamic Stability and Bifurcation in Nonconservative Mechanics


Dynamic Stability and Bifurcation in Nonconservative Mechanics

Author: Davide Bigoni

language: en

Publisher: Springer

Release Date: 2018-07-09


DOWNLOAD





The book offers a unified view on classical results and recent advances in the dynamics of nonconservative systems. The theoretical fundamentals are presented systematically and include: Lagrangian and Hamiltonian formalism, non-holonomic constraints, Lyapunov stability theory, Krein theory of spectra of Hamiltonian systems and modes of negative and positive energy, anomalous Doppler effect, reversible systems, sensitivity analysis of non-self-adjoint operators, dissipation-induced instabilities, local and global instabilities. They are applied to engineering situations such as the coupled mode flutter of wings, flags and pipes, flutter in granular materials, piezoelectric mechanical metamaterials, wave dynamics of infinitely long structures, radiative damping, stability of high-speed trains, experimental realization of follower forces, soft-robot locomotion, wave energy converters, friction-induced instabilities, brake squeal, non-holonomic sailing, dynamics of moving continua, and stability of bicycles and walking robots. The book responds to a demand in the modern theory of nonconservative systems coming from the growing number of scientific and engineering disciplines including physics, fluid and solids mechanics, fluid-structure interactions, and modern multidisciplinary research areas such as biomechanics, micro- and nanomechanics, optomechanics, robotics, and material science. It is targeted at both young and experienced researchers and engineers working in fields associated with the dynamics of structures and materials. The book will help to get a comprehensive and systematic knowledge on the stability, bifurcations and dynamics of nonconservative systems and establish links between approaches and methods developed in different areas of mechanics and physics and modern applied mathematics.

Nonconservative Stability Problems of Modern Physics


Nonconservative Stability Problems of Modern Physics

Author: Oleg N. Kirillov

language: en

Publisher: Walter de Gruyter GmbH & Co KG

Release Date: 2021-03-08


DOWNLOAD





This updated revision gives a complete and topical overview on Nonconservative Stability which is essential for many areas of science and technology ranging from particles trapping in optical tweezers and dynamics of subcellular structures to dissipative and radiative instabilities in fluid mechanics, astrophysics and celestial mechanics. The author presents relevant mathematical concepts as well as rigorous stability results and numerous classical and contemporary examples from non-conservative mechanics and non-Hermitian physics. New coverage of ponderomotive magnetism, experimental detection of Ziegler’s destabilization phenomenon and theory of double-diffusive instabilities in magnetohydrodynamics.

Stability and Bifurcation of Structures


Stability and Bifurcation of Structures

Author: Angelo Luongo

language: en

Publisher: Springer Nature

Release Date: 2023-06-27


DOWNLOAD





This book overcomes the separation existing in literature between the static and the dynamic bifurcation worlds. It brings together buckling and post-buckling problems with nonlinear dynamics, the bridge being represented by the perturbation method, i.e., a mathematical tool that allows for solving static and dynamic problems virtually in the same way. The book is organized as follows: Chapter one gives an overview; Chapter two illustrates phenomenological aspect of static and dynamic bifurcations; Chapter three deals with linear stability analysis of dynamical systems; Chapter four and five discuss the general theory and present examples of buckling and post-buckling of elastic structures; Chapter six describes a linearized approach to buckling, usually adopted in the technical literature, in which pre-critical deformations are neglected; Chapters seven to ten, analyze elastic and elasto-plastic buckling of planar systems of beams, thin-walled beams and plate assemblies, respectively; Chapters eleven to thirteen, illustrate dynamic instability phenomena, such as flutter induced by follower forces, aeroelastic bifurcations caused by wind flow, and parametric excitation triggered by pulsating loads. Finally, Chapter fourteen discusses a large gallery of solved problems, concerning topics covered in the book. An Appendix presents the Vlasov theory of open thin-walled beams. The book is devoted to advanced undergraduate and graduate students, as well as engineers and practitioners. The methods illustrated here are immediately applicable to model real problems. The Book Introduces, in a simple way, complex concepts of bifurcation theory, by making use of elementary mathematics Gives a comprehensive overview of bifurcation of linear and nonlinear structures, in static and dynamic fields Contains a chapter in which many problems are solved, either analytically or numerically, and results commented