Nonconservative Stability Problems Of Modern Physics


Download Nonconservative Stability Problems Of Modern Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonconservative Stability Problems Of Modern Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Nonconservative Stability Problems of Modern Physics


Nonconservative Stability Problems of Modern Physics

Author: Oleg N. Kirillov

language: en

Publisher: Walter de Gruyter

Release Date: 2013-06-26


DOWNLOAD





This work gives a complete overview on the subject of nonconservative stability from the modern point of view. Relevant mathematical concepts are presented, as well as rigorous stability results and numerous classical and contemporary examples from mechanics and physics. It deals with both finite- and infinite-dimensional nonconservative systems and covers the fundamentals of the theory, including such topics as Lyapunov stability and linear stability analysis, Hamiltonian and gyroscopic systems, reversible and circulatory systems, influence of structure of forces on stability, and dissipation-induced instabilities, as well as concrete physical problems, including perturbative techniques for nonself-adjoint boundary eigenvalue problems, theory of the destabilization paradox due to small damping in continuous circulatory systems, Krein-space related perturbation theory for the MHD kinematic mean field α2-dynamo, analysis of Campbell diagrams and friction-induced flutter in gyroscopic continua, non-Hermitian perturbation of Hermitian matrices with applications to optics, and magnetorotational instability and the Velikhov-Chandrasekhar paradox. The book serves present and prospective specialists providing the current state of knowledge in the actively developing field of nonconservative stability theory. Its understanding is vital for many areas of technology, ranging from such traditional ones as rotor dynamics, aeroelasticity and structural mechanics to modern problems of hydro- and magnetohydrodynamics and celestial mechanics.

Nonconservative Stability Problems of Modern Physics


Nonconservative Stability Problems of Modern Physics

Author: Oleg N. Kirillov

language: en

Publisher: Walter de Gruyter GmbH & Co KG

Release Date: 2021-03-08


DOWNLOAD





This updated revision gives a complete and topical overview on Nonconservative Stability which is essential for many areas of science and technology ranging from particles trapping in optical tweezers and dynamics of subcellular structures to dissipative and radiative instabilities in fluid mechanics, astrophysics and celestial mechanics. The author presents relevant mathematical concepts as well as rigorous stability results and numerous classical and contemporary examples from non-conservative mechanics and non-Hermitian physics. New coverage of ponderomotive magnetism, experimental detection of Ziegler’s destabilization phenomenon and theory of double-diffusive instabilities in magnetohydrodynamics.

Dynamic Stability and Bifurcation in Nonconservative Mechanics


Dynamic Stability and Bifurcation in Nonconservative Mechanics

Author: Davide Bigoni

language: en

Publisher: Springer

Release Date: 2018-07-09


DOWNLOAD





The book offers a unified view on classical results and recent advances in the dynamics of nonconservative systems. The theoretical fundamentals are presented systematically and include: Lagrangian and Hamiltonian formalism, non-holonomic constraints, Lyapunov stability theory, Krein theory of spectra of Hamiltonian systems and modes of negative and positive energy, anomalous Doppler effect, reversible systems, sensitivity analysis of non-self-adjoint operators, dissipation-induced instabilities, local and global instabilities. They are applied to engineering situations such as the coupled mode flutter of wings, flags and pipes, flutter in granular materials, piezoelectric mechanical metamaterials, wave dynamics of infinitely long structures, radiative damping, stability of high-speed trains, experimental realization of follower forces, soft-robot locomotion, wave energy converters, friction-induced instabilities, brake squeal, non-holonomic sailing, dynamics of moving continua, and stability of bicycles and walking robots. The book responds to a demand in the modern theory of nonconservative systems coming from the growing number of scientific and engineering disciplines including physics, fluid and solids mechanics, fluid-structure interactions, and modern multidisciplinary research areas such as biomechanics, micro- and nanomechanics, optomechanics, robotics, and material science. It is targeted at both young and experienced researchers and engineers working in fields associated with the dynamics of structures and materials. The book will help to get a comprehensive and systematic knowledge on the stability, bifurcations and dynamics of nonconservative systems and establish links between approaches and methods developed in different areas of mechanics and physics and modern applied mathematics.