Data Engineering On The Cloud A Practical Guide 2025

Download Data Engineering On The Cloud A Practical Guide 2025 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Engineering On The Cloud A Practical Guide 2025 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Engineering on the Cloud: A Practical Guide 2025

Author: Raghu Gopa, Dr. Arpita Roy
language: en
Publisher: YASHITA PRAKASHAN PRIVATE LIMITED
Release Date:
PREFACE The digital transformation of businesses and the exponential growth of data have created a fundamental shift in how organizations approach data management, analytics, and decision-making. As cloud technologies continue to evolve, cloud-based data engineering has become central to the success of modern data-driven enterprises. “Data Engineering on the Cloud: A Practical Guide” aims to equip data professionals, engineers, and organizations with the knowledge and practical tools needed to build and manage scalable, secure, and efficient data engineering pipelines in cloud environments. This book is designed to bridge the gap between the theoretical foundations of data engineering and the practical realities of working with cloud-based data platforms. Cloud computing has revolutionized data storage, processing, and analytics by offering unparalleled scalability, flexibility, and cost efficiency. However, with these opportunities come new challenges, including selecting the right tools, architectures, and strategies to ensure seamless data integration, transformation, and delivery. As businesses increasingly migrate their data to the cloud, it is essential for data engineers to understand how to leverage the capabilities of the cloud to build robust data pipelines that can handle large, complex datasets in real-time. Throughout this guide, we will explore the various facets of cloud-based data engineering, from understanding cloud storage and computing services to implementing data integration techniques, managing data quality, and optimizing performance. Whether you are building data pipelines from scratch, migrating on-premises systems to the cloud, or enhancing existing data workflows, this book will provide actionable insights and step-by-step guidance on best practices, tools, and frameworks commonly used in cloud data engineering. Key topics covered in this book include: · The fundamentals of cloud architecture and the role of cloud providers (such as AWS, Google Cloud, and Microsoft Azure) in data engineering workflows. · Designing scalable and efficient data pipelines using cloud-based tools and services. · Integrating diverse data sources, including structured, semi-structured, and unstructured data, for seamless processing and analysis. · Data transformation techniques, including ETL (Extract, Transform, Load) and ELT (Extract, Load, Transform), in cloud environments. · Ensuring data quality, governance, and security when working with cloud data platforms. · Optimizing performance for data storage, processing, and analytics to handle growing data volumes and complexity. This book is aimed at professionals who are already familiar with data engineering concepts and are looking to apply those concepts within cloud environments. It is also suitable for organizations that are in the process of migrating to cloud-based data platforms and wish to understand the nuances and best practices for cloud data engineering. In addition to theoretical knowledge, this guide emphasizes hands-on approaches, providing practical examples, code snippets, and real-world case studies to demonstrate the effective implementation of cloud-based data engineering solutions. We will explore how to utilize cloud-native services to streamline workflows, improve automation, and reduce manual interventions in data pipelines. Throughout the book, you will gain insights into the evolving tools and technologies that make data engineering more agile, reliable, and efficient. The role of data engineering is growing ever more important in enabling businesses to unlock the value of their data. By the end of this book, you will have a comprehensive understanding of how to leverage cloud technologies to build high-performance, scalable data engineering solutions that are aligned with the needs of modern data-driven organizations. We hope this guide helps you to navigate the complexities of cloud data engineering and helps you unlock new possibilities for your data initiatives. Welcome to “Data Engineering on the Cloud: A Practical Guide.” Let’s embark on this journey to harness the full potential of cloud technologies in the world of data engineering. Authors
Cloud-First Data Engineering: Architecting Scalable Pipelines and Analytics with AWS 2025

Author: Author:1- PEEYUSH PATEL Author:2 -DR. MANMOHAN SHARMA
language: en
Publisher: YASHITA PRAKASHAN PRIVATE LIMITED
Release Date:
Author:1- PEEYUSH PATEL Author:2 -DR. MANMOHAN SHARMA ISBN - 978-93-6788-817-9 Preface In today’s digital economy, organizations generate more data in a single day than many legacy systems could process in years. The shift to cloud-first architectures has transformed how we collect, store, and analyze information—enabling businesses to respond faster to market changes, scale without upfront hardware investments, and foster innovation across teams. This book, Cloud-First Data Engineering: Architecting Scalable Pipelines and Analytics with AWS, is written for data engineers, architects, and technical leaders who seek to design robust, high-performing data platforms using Amazon Web Services. Over the past decade, AWS has introduced a rich portfolio of data services—ranging from serverless ETL (AWS Glue) and streaming solutions (Kinesis, MSK) to petabyte-scale analytics (Redshift, Athena) and machine learning integrations (SageMaker). Yet, with such breadth comes complexity: selecting the right components, designing for cost efficiency, maintaining security and compliance, and ensuring operational excellence are constant challenges. This book distills best practices, architectural patterns, and real-world examples into a cohesive roadmap. You will learn how to build end-to-end pipelines that evolve with your data volume, implement modern data Lakehouse strategies, enable real-time insights, and incorporate governance at every layer. Chapters progress from foundational concepts—such as cloud-first paradigms and core AWS data services—to advanced topics like Data Mesh, serverless Lakehouse’s, generative AI for data quality, and emerging roles in data organization. Each section demystifies the trade-offs, illustrates implementation steps, and highlights pitfalls to avoid. Whether you are migrating legacy workloads, optimizing existing pipelines, or pioneering new analytics capabilities, this book serves as both a practical guide and strategic playbook to navigate the ever-changing landscape of cloud data engineering on AWS. Authors
Data Engineering with Google Cloud Platform

Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.