Computing For Comparative Microbial Genomics


Download Computing For Comparative Microbial Genomics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computing For Comparative Microbial Genomics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computing for Comparative Microbial Genomics


Computing for Comparative Microbial Genomics

Author: David Wayne Ussery

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-02-26


DOWNLOAD





Overview and Goals This book describes how to visualize and compare bacterial genomes. Sequencing technologies are becoming so inexpensive that soon going for a cup of coffee will be more expensive than sequencing a bacterial genome. Thus, there is a very real and pressing need for high-throughput computational methods to compare hundreds and thousands of bacterial genomes. It is a long road from molecular biology to systems biology, and in a sense this text can be thought of as a path bridging these ? elds. The goal of this book is to p- vide a coherent set of tools and a methodological framework for starting with raw DNA sequences and producing fully annotated genome sequences, and then using these to build up and test models about groups of interacting organisms within an environment or ecological niche. Organization and Features The text is divided into four main parts: Introduction, Comparative Genomics, Transcriptomics and Proteomics, and ? nally Microbial Communities. The ? rst ? ve chapters are introductions of various sorts. Each of these chapters represents an introduction to a speci? c scienti? c ? eld, to bring all readers up to the same basic level before proceeding on to the methods of comparing genomes. First, a brief overview of molecular biology and of the concept of sequences as biological inf- mation are given.

Computing for Comparative Microbial Genomics


Computing for Comparative Microbial Genomics

Author: David Wayne Ussery

language: en

Publisher: Springer Science & Business Media

Release Date: 2008-12-16


DOWNLOAD





Overview and Goals This book describes how to visualize and compare bacterial genomes. Sequencing technologies are becoming so inexpensive that soon going for a cup of coffee will be more expensive than sequencing a bacterial genome. Thus, there is a very real and pressing need for high-throughput computational methods to compare hundreds and thousands of bacterial genomes. It is a long road from molecular biology to systems biology, and in a sense this text can be thought of as a path bridging these ? elds. The goal of this book is to p- vide a coherent set of tools and a methodological framework for starting with raw DNA sequences and producing fully annotated genome sequences, and then using these to build up and test models about groups of interacting organisms within an environment or ecological niche. Organization and Features The text is divided into four main parts: Introduction, Comparative Genomics, Transcriptomics and Proteomics, and ? nally Microbial Communities. The ? rst ? ve chapters are introductions of various sorts. Each of these chapters represents an introduction to a speci? c scienti? c ? eld, to bring all readers up to the same basic level before proceeding on to the methods of comparing genomes. First, a brief overview of molecular biology and of the concept of sequences as biological inf- mation are given.

Microbial Pathogenomics


Microbial Pathogenomics

Author: H. de Reuse

language: en

Publisher: Karger Medical and Scientific Publishers

Release Date: 2009-08-27


DOWNLOAD





Microbial Pathogenomics' contains a unique collection of reviews demonstrating how genomics has revolutionized our understanding of virulence, host-adaptation strategies and the evolution of bacterial pathogens. Current technologies - computational tools and functional approaches to genome analysis - are carefully documented and clearly illustrated. These include visualization tools for genome comparison, databases, in silico metabolic reconstructions and function prediction as well as interactomics for the study of protein-protein interactions. The concepts of pan-genomics and reverse vaccinology are introduced as strategies when addressing the challenge presented by bacterial diversity in the prevention and treatment of infectious diseases. The authors explore individual bacterial pathogens and discuss the mechanisms that have contributed to their evolutionary success. Special cases of host adaptation, for example, are illustrated by Helicobacter pylori and 'Mycobacterium tuberculosis' which are human-specific and highly persistent; further bacteria discussed include 'Escherichia coli, Campylobacter, Pseudomonas, Legionella, Bartonella, Burkholderia' and 'Staphylococcus'. 'Microbial Pathogenomics' provides the reader with a global view of key aspects and future trends in bacterial pathogenomics and evaluates their impact on the understanding and treatment of infectious diseases. Well illustrated and accessible to both specialists and nonspecialists, it is recommended not only for researchers in microbiology, genomics and biotechnology, but also for lecturers and teachers.