Block Oriented Nonlinear System Identification

Download Block Oriented Nonlinear System Identification PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Block Oriented Nonlinear System Identification book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Block-oriented Nonlinear System Identification

Author: Fouad Giri
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-08-18
Block-oriented Nonlinear System Identification deals with an area of research that has been very active since the turn of the millennium. The book makes a pedagogical and cohesive presentation of the methods developed in that time. These include: iterative and over-parameterization techniques; stochastic and frequency approaches; support-vector-machine, subspace, and separable-least-squares methods; blind identification method; bounded-error method; and decoupling inputs approach. The identification methods are presented by authors who have either invented them or contributed significantly to their development. All the important issues e.g., input design, persistent excitation, and consistency analysis, are discussed. The practical relevance of block-oriented models is illustrated through biomedical/physiological system modelling. The book will be of major interest to all those who are concerned with nonlinear system identification whatever their activity areas. This is particularly the case for educators in electrical, mechanical, chemical and biomedical engineering and for practising engineers in process, aeronautic, aerospace, robotics and vehicles control. Block-oriented Nonlinear System Identification serves as a reference for active researchers, new comers, industrial and education practitioners and graduate students alike.
Block-oriented Nonlinear System Identification

Block-oriented Nonlinear System Identification deals with an area of research that has been very active since the turn of the millennium. The book makes a pedagogical and cohesive presentation of the methods developed in that time. These include: iterative and over-parameterization techniques; stochastic and frequency approaches; support-vector-machine, subspace, and separable-least-squares methods; blind identification method; bounded-error method; and decoupling inputs approach. The identification methods are presented by authors who have either invented them or contributed significantly to their development. All the important issues e.g., input design, persistent excitation, and consistency analysis, are discussed. The practical relevance of block-oriented models is illustrated through biomedical/physiological system modelling. The book will be of major interest to all those who are concerned with nonlinear system identification whatever their activity areas. This is particularly the case for educators in electrical, mechanical, chemical and biomedical engineering and for practising engineers in process, aeronautic, aerospace, robotics and vehicles control. Block-oriented Nonlinear System Identification serves as a reference for active researchers, new comers, industrial and education practitioners and graduate students alike.
Block-oriented Nonlinear System Identification Using Semidenite Programming

Identification of block-oriented nonlinear systems has been an active research area for the last several decades. A block-oriented nonlinear system represents a nonlinear dynamical system as a combination of linear dynamic systems and static nonlinear blocks. In block-oriented nonlinear systems, each block (linear dynamic systems and static nonlinearity) can be connected in many different ways (series, parallel, feedback) and this flexibility provides the block-oriented modeling approach with an ability to capture a large class of nonlinear systems. However, intermediate signals in such block-oriented systems are not measurable and the inaccessibility of such measurements is the main difficulty in block-oriented nonlinear system identification. Recently a system identification method using rank minimization has been introduced for linear system identification. Finding the simplest model within a feasible model set restricted by convex constraints can often be formulated as a rank minimization problem. In this research, the rank minimization approach is extended to block-oriented nonlinear system identification. The system parameter estimation problem is formulated as a rank minimization problem or the combination of prediction error and rank minimization problems by constraining a finite dimensional time dependency of a linear dynamic system and by using the monotonicity of static nonlinearity. This allows us to reconstruct non-measurable intermediate signals and once the intermediate signals have been reconstructed, the identification of each block can be solved with the standard Prediction Error method or Least Squares method. The research work presented in this dissertation proposes a new approach for block-oriented system identification by tackling the inaccessibility of measurement of intermediate signals in block-oriented nonlinear systems via rank minimization. Since the rank minimization problem is non-convex, the rank minimization problem is relaxed to a semidefinite programming problem by minimizing the nuclear norm instead of the rank. The research contributes to advances in block-oriented nonlinear system identification.