Atom Interferometry Using Near Resonant Standing Waves Of Light

Download Atom Interferometry Using Near Resonant Standing Waves Of Light PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Atom Interferometry Using Near Resonant Standing Waves Of Light book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Atom Interferometry Using Near Resonant Standing Waves of Light

This thesis details the experimental investigation of a new type of atom interferometer using rubidium-85 atoms in the unexplored near-resonant domain. A cold cloud of atoms, all prepared in the same hyperfine ground state, are subjected to temporally periodic pulses of near-resonant standing waves of light. The standing wave pulses are made to act like an absorption grating where only atoms located around the low intensity region about the nodes remain in the initial ground state, the rest are pumped into a dark hyperfine ground state. The output of the atom interferometer is a measure of the fraction of atoms remaining in the initial ground state after N standing wave pulses for different times between the pulses. An increased survival rate is observed for certain times between pulses due to the occurrence of a coherence echo and the matter wave Talbot effect. This feature allows us to use our atom interferometer to make measurements of the Talbot time which is an important parameter in determinations of the fine structure constant alpha. We provide a theoretical model to describe the relevant physics behind our atom interferometer that compares well with our empirical results. Design and implementation of the apparatus are discussed along with characterisation of parameters such as pulse duration, pulse number, and frequency. Finally we include a demonstration of how, in principle, our atom interferometer could be used to make precision measurements of the Talbot time along with some of the necessary steps to bring it in line with current leading measurements.
Atom Interferometry

Since atom interferometers were first realized about 20 years ago, atom interferometry has had many applications in basic and applied science, and has been used to measure gravity acceleration, rotations and fundamental physical quantities with unprecedented precision. Future applications range from tests of general relativity to the development of next-generation inertial navigation systems. This book presents the lectures and notes from the Enrico Fermi school "Atom Interferometry", held in Varenna, Italy, in July 2013. The aim of the school was to cover basic experimental and theoretical aspects and to provide an updated review of current activities in the field as well as main achievements, open issues and future prospects. Topics covered include theoretical background and experimental schemes for atom interferometry; ultracold atoms and atom optics; comparison of atom, light, electron and neutron interferometers and their applications; high precision measurements with atom interferometry and their application to tests of fundamental physics, gravitation, inertial measurements and geophysics; measurement of fundamental constants; interferometry with quantum degenerate gases; matter wave interferometry beyond classical limits; large area interferometers; atom interferometry on chips; and interferometry with molecules. The book will be a valuable source of reference for students, newcomers and experts in the field of atom interferometry.
Atom Interferometry

The field of atom interferometry has expanded rapidly in recent years, and todays research laboratories are using atom interferometers both as inertial sensors and for precision measurements. Many researchers also use atom interferometry as a means of researching fundamental questions in quantum mechanics. Atom Interferometry contains contributions from theoretical and experimental physicists at the forefront of this rapidly developing field. Editor Paul R. Berman includes an excellent balance of background material and recent experimental results,providing a general overview of atom interferometry and demonstrating the promise that it holds for the future. - Includes contributions from many of the research groups that have pioneered this emerging field - Discusses and demonstrates new aspects of the wave nature of atoms - Explains the many important applications of atom interferometry, from a measurement of the gravitational constant to atom lithography - Examines applications of atom interferometry to fundamentally important quantum mechanics problems