Algorithms For Map Construction And Comparison

Download Algorithms For Map Construction And Comparison PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algorithms For Map Construction And Comparison book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Map Construction Algorithms

The book provides an overview of the state-of-the-art of map construction algorithms, which use tracking data in the form of trajectories to generate vector maps. The most common trajectory type is GPS-based trajectories. It introduces three emerging algorithmic categories, outlines their general algorithmic ideas, and discusses three representative algorithms in greater detail. To quantify map construction algorithms, the authors include specific datasets and evaluation measures. The datasets, source code of map construction algorithms and evaluation measures are publicly available on http://www.mapconstruction.org. The web site serves as a repository for map construction data and algorithms and researchers can contribute by uploading their own code and benchmark data. Map Construction Algorithms is an excellent resource for professionals working in computational geometry, spatial databases, and GIS. Advanced-level students studying computer science, geography and mathematics will also find this book a useful tool.
Algorithms for Map Construction and Comparison

Analyzing and mining various kinds of geo-referenced data is important in many application areas. We use two types of data: geo-referenced trajectories, such as vehicular tracking data, as well as geo-referenced graph data, such as street maps. This dissertation consists of two main parts. In the first part, we consider the problem of constructing street maps from geo-referenced trajectories: Given a set of trajectories in the plane, compute a street-map that represents all trajectories in the set. In this part, we have two main contributions. First, we present a scalable incremental algorithm that is based on partial matching of the trajectories to the graph. For the partial matching we introduce a new variant of partial Fréchet distance. We use minimum-link paths to reduce the complexity of the generated map. We provide quality guarantees and experimental results based on both real and synthetic data. We further present two multi-thresholding techniques for density-based map construction algorithms. Multi-thresholding is necessary because some streets are travelled more heavily than other streets (highways vs. neighborhood streets), which results in different sampling densities, and thus, one threshold fails to capture all the streets. We present a new thresholding technique that uses persistent homology combined with statistical analysis to determine a small set of thresholds that captures all or most of the significant topological features. We also formalize the selection of thresholds in a density-based map construction algorithm for different variants of uniform sampling. In part two of the dissertation, we consider the map comparison problem: Given two street-maps embedded in space, quantify their differences. Given maps of the same city collected from different sources, researchers often need to know how they differ. Map comparison is very important in the field of transportation network analysis as well as to assess the quality of map construction algorithms. We present a new path-based distance measure to compare two planar geometric graphs that are embedded in the same plane. Our distance measure takes structural as well as spatial properties into account. We show that it can be approximated in polynomial time and it preserves structural and spatial properties of the graphs. We provide experimental results comparing vendor quality street maps (TeleAtlas) with open source maps (OpenStreetMap), as well as maps generated by map construction algorithms with ground-truth maps (OpenStreetMap).