Advances In Probabilistic Graphical Models

Download Advances In Probabilistic Graphical Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Probabilistic Graphical Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Probabilistic Graphical Models

This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.
Advances in Probabilistic Graphical Models

In recent years considerable progress has been made in the area of probabilistic graphical models, in particular Bayesian networks and influence diagrams. Probabilistic graphical models have become mainstream in the area of uncertainty in artificial intelligence; contributions to the area are coming from computer science, mathematics, statistics and engineering. This carefully edited book brings together in one volume some of the most important topics of current research in probabilistic graphical modelling, learning from data and probabilistic inference. This includes topics such as the characterisation of conditional independence, the sensitivity of the underlying probability distribution of a Bayesian network to variation in its parameters, the learning of graphical models with latent variables and extensions to the influence diagram formalism. In addition, attention is given to important application fields of probabilistic graphical models, such as the control of vehicles, bioinformatics and medicine.
Advances in Probabilistic Graphical Models

This book brings together important topics of current research in probabilistic graphical modeling, learning from data and probabilistic inference. Coverage includes such topics as the characterization of conditional independence, the learning of graphical models with latent variables, and extensions to the influence diagram formalism as well as important application fields, such as the control of vehicles, bioinformatics and medicine.