Xgboost The Extreme Gradient Boosting For Mining Applications

Download Xgboost The Extreme Gradient Boosting For Mining Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Xgboost The Extreme Gradient Boosting For Mining Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
XGBoost. The Extreme Gradient Boosting for Mining Applications

Technical Report from the year 2017 in the subject Computer Science - Internet, New Technologies, grade: 8, language: English, abstract: Tree boosting has empirically proven to be a highly effective and versatile approach for data-driven modelling. The core argument is that tree boosting can adaptively determine the local neighbourhoods of the model thereby taking the bias-variance trade-off into consideration during model fitting. Recently, a tree boosting method known as XGBoost has gained popularity by providing higher accuracy. XGBoost further introduces some improvements which allow it to deal with the bias-variance trade-off even more carefully. In this research work, we propose to demonstrate the use of an adaptive procedure i.e. Learned Loss (LL) to update the loss function as the boosting proceeds. Accuracy of the proposed algorithm i.e. XGBoost with Learned Loss boosting function is evaluated using test/train method, K-fold cross validation, and Stratified cross validation method and compared with the state of the art algorithms viz. XGBoost, AdaBoost, AdaBoost-NN, Linear Regression(LR), Neural Network(NN), Decision Tree(DT), Support Vector Machine(SVM), bagging-DT, bagging-NN and Random Forest algorithms. The parameters evaluated are accuracy, Type 1 error and Type 2 error (in Percentages). This study uses total ten years of historical data from Jan 2007 to Aug 2017 of two stock market indices CNX Nifty and S&P BSE Sensex which are highly voluminous. Further, in this research work, we will investigate how XGBoost differs from the more traditional ensemble techniques. Moreover, we will discuss the regularization techniques that these methods offer and the effect these have on the models. In addition to this, we will attempt to answer the question of why XGBoost seems to win so many competitions. To do this, we will provide some arguments for why tree boosting, and in particular XGBoost, seems to be such a highly effective and versatile approach t
Applications of Artificial Intelligence in Mining and Geotechnical Engineering

Applications of Artificial Intelligence in Mining, Geotechnical and Geoengineering provides recent advances in mining, geotechnical and geoengineering, as well as applications of artificial intelligence in these areas. It serves as the first book on applications of artificial intelligence in mining, geotechnical and geoengineering, providing an opportunity for researchers, scholars, engineers, practitioners and data scientists from all over the world to understand current developments and applications. Topics covered include slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams and hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. In the geotechnical and geoengineering aspects, topics of specific interest include, but are not limited to, foundation, dam, tunneling, geohazard, geoenvironmental and petroleum engineering, rock mechanics, geotechnical engineering, soil mechanics and foundation engineering, civil engineering, hydraulic engineering, petroleum engineering, engineering geology, etc. - Guides readers through the process of gathering, processing, and analyzing datasets specifically tailored for mining, geotechnical, and engineering challenges. - Examines the evolution and practical implementation of artificial intelligence models in predicting, forecasting, and optimizing solutions for mining, geotechnical, and engineering problems. - Offers cutting-edge methodologies to address the most demanding and complex issues encountered in the fields of mining, geotechnical studies, and engineering.
Mining Data for Financial Applications

This book constitutes revised selected papers from the 5th Workshop on Mining Data for Financial Applications, MIDAS 2020, held in conjunction with ECML PKDD 2020, in Ghent, Belgium, in September 2020.* The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with challenges, potentialities, and applications of leveraging data-mining tasks regarding problems in the financial domain. *The workshop was held virtually due to the COVID-19 pandemic. “Information Extraction from the GDELT Database to Analyse EU Sovereign Bond Markets” and “Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.