Structural Priors In Deep Neural Networks


Download Structural Priors In Deep Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Structural Priors In Deep Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Structural Priors in Deep Neural Networks


Structural Priors in Deep Neural Networks

Author: Yani Andrew Ioannou

language: en

Publisher:

Release Date: 2018


DOWNLOAD





Deep Representation Learning with Induced Structural Priors


Deep Representation Learning with Induced Structural Priors

Author: Saining Xie

language: en

Publisher:

Release Date: 2018


DOWNLOAD





With the support of big-data and big-compute, deep learning has reshaped the landscape of research and applications in artificial intelligence. Whilst traditional hand-guided feature engineering in many cases is simplified, the deep network architectures become increasingly more complex. A central question is whether we can distill the minimal set of structural priors that can provide us the maximal flexibility, and lead us to richer sets of structural primitives. Those structural priors will make the learning process more effective, and potentially lay the foundations towards the ultimate goal of building general intelligent systems. This dissertation focuses on how we can tackle different real world problems in computer vision and machine learning with carefully designed neural network architectures, guided by simple yet effective structural priors. In particular, this thesis focuses on two structural priors that have proven to be useful and generalizable in many different scenarios: the multi-scale prior, with an application in edge detection, and the sparse-connectivity prior implemented for generic visual recognition. Examples will be presented in the last part, on how to learn meaningful structures directly from data, rather than hard-wiring them by, for example, learning a convolutional pseudo-prior in the label space, or adopting a dynamic self-attention mechanism.

Inside Deep Learning


Inside Deep Learning

Author: Edward Raff

language: en

Publisher: Simon and Schuster

Release Date: 2022-05-31


DOWNLOAD





Journey through the theory and practice of modern deep learning, and apply innovative techniques to solve everyday data problems. In Inside Deep Learning, you will learn how to: Implement deep learning with PyTorch Select the right deep learning components Train and evaluate a deep learning model Fine tune deep learning models to maximize performance Understand deep learning terminology Adapt existing PyTorch code to solve new problems Inside Deep Learning is an accessible guide to implementing deep learning with the PyTorch framework. It demystifies complex deep learning concepts and teaches you to understand the vocabulary of deep learning so you can keep pace in a rapidly evolving field. No detail is skipped--you'll dive into math, theory, and practical applications. Everything is clearly explained in plain English. About the Technology Deep learning doesn't have to be a black box! Knowing how your models and algorithms actually work gives you greater control over your results. And you don't have to be a mathematics expert or a senior data scientist to grasp what's going on inside a deep learning system. This book gives you the practical insight you need to understand and explain your work with confidence. About the Book Inside Deep Learning illuminates the inner workings of deep learning algorithms in a way that even machine learning novices can understand. You'll explore deep learning concepts and tools through plain language explanations, annotated code, and dozens of instantly useful PyTorch examples. Each type of neural network is clearly presented without complex math, and every solution in this book can run using readily available GPU hardware! What's Inside Select the right deep learning components Train and evaluate a deep learning model Fine tune deep learning models to maximize performance Understand deep learning terminology About the Reader For Python programmers with basic machine learning skills. About the Author Edward Raff is a Chief Scientist at Booz Allen Hamilton, and the author of the JSAT machine learning library. Quotes Pick up this book, and you won't be able to put it down. A rich, engaging knowledge base of deep learning math, algorithms, and models--just like the title says! - From the Foreword by Kirk Borne Ph.D., Chief Science Officer, DataPrime.ai The clearest and easiest book for learning deep learning principles and techniques I have ever read. The graphical representations for the algorithms are an eye-opening revelation. - Richard Vaughan, Purple Monkey Collective A great read for anyone interested in understanding the details of deep learning. - Vishwesh Ravi Shrimali, MBRDI.