What Is Theory Of Computation

Download What Is Theory Of Computation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get What Is Theory Of Computation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to the Theory of Computation

Author: Michael Sipser
language: en
Publisher: Thomson/Course Technology
Release Date: 2006
"Intended as an upper-level undergraduate or introductory graduate text in computer science theory," this book lucidly covers the key concepts and theorems of the theory of computation. The presentation is remarkably clear; for example, the "proof idea," which offers the reader an intuitive feel for how the proof was constructed, accompanies many of the theorems and a proof. Introduction to the Theory of Computation covers the usual topics for this type of text plus it features a solid section on complexity theory--including an entire chapter on space complexity. The final chapter introduces more advanced topics, such as the discussion of complexity classes associated with probabilistic algorithms.
Theory of Computation

Author: George Tourlakis
language: en
Publisher: John Wiley & Sons
Release Date: 2014-08-21
Learn the skills and acquire the intuition to assess the theoretical limitations of computer programming Offering an accessible approach to the topic, Theory of Computation focuses on the metatheory of computing and the theoretical boundaries between what various computational models can do and not do—from the most general model, the URM (Unbounded Register Machines), to the finite automaton. A wealth of programming-like examples and easy-to-follow explanations build the general theory gradually, which guides readers through the modeling and mathematical analysis of computational phenomena and provides insights on what makes things tick and also what restrains the ability of computational processes. Recognizing the importance of acquired practical experience, the book begins with the metatheory of general purpose computer programs, using URMs as a straightforward, technology-independent model of modern high-level programming languages while also exploring the restrictions of the URM language. Once readers gain an understanding of computability theory—including the primitive recursive functions—the author presents automata and languages, covering the regular and context-free languages as well as the machines that recognize these languages. Several advanced topics such as reducibilities, the recursion theorem, complexity theory, and Cook's theorem are also discussed. Features of the book include: A review of basic discrete mathematics, covering logic and induction while omitting specialized combinatorial topics A thorough development of the modeling and mathematical analysis of computational phenomena, providing a solid foundation of un-computability The connection between un-computability and un-provability: Gödel's first incompleteness theorem The book provides numerous examples of specific URMs as well as other programming languages including Loop Programs, FA (Deterministic Finite Automata), NFA (Nondeterministic Finite Automata), and PDA (Pushdown Automata). Exercises at the end of each chapter allow readers to test their comprehension of the presented material, and an extensive bibliography suggests resources for further study. Assuming only a basic understanding of general computer programming and discrete mathematics, Theory of Computation serves as a valuable book for courses on theory of computation at the upper-undergraduate level. The book also serves as an excellent resource for programmers and computing professionals wishing to understand the theoretical limitations of their craft.
Introduction to the Theory of Computation

Now you can clearly present even the most complex computational theory topics to your students with Sipser’s distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today’s computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser’s well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition’s refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject’s rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E’s comprehensive coverage makes this an ideal ongoing reference tool for those studying theoretical computing. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.