Well Architectured Fluoropolymers Synthesis Properties And Applications

Download Well Architectured Fluoropolymers Synthesis Properties And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Well Architectured Fluoropolymers Synthesis Properties And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Well-Architectured Fluoropolymers: Synthesis, Properties and Applications

Because of the increasing need for ever better performing materials endowed with specific properties, macromolecular engineering has become a useful tool for designing well-architectured polymers (telomers, telechelics, stars, dendrimers, alternating, block- and graftcopolymers). These polymers are nowadays seeing an enormous growth. Among them, fluoropolymers are seen as high value added materials in many applications ranging from surfactants, optical fibers, biomaterials, coatings, to membranes for fuel cells. Indeed, the relationship between structure of the monomer to the properties of the polymers is of increasing interest so that these properties are tuned for the most appropriate applications. As most fluoropolymers are prepared from radical synthesis, this book devotes various parts on the use of the controlled radical (or pseudo-living) polymerisation of fluoromonomers leading to discoveries of thermoplastic elastomers or original surfactants for polymerisation in supercritical CO2. Well-Architectured Fluoropolymers: Synthesis, Properties and Applications is composed of five chapters starting with a general introduction outlining basic concepts. Emphasis is placed on recent developments, and each chapter describes comprehensive techniques of synthesis of well-defined fluorotelomers or polymers, their properties, characterisations, and their applications, for immediate use by today's engineers, industrial and academic scientists, and researchers. The book has been arranged to enable self-managed reading and learning. It is both a source of data and a reference. - On the synthesis, properties and applications of fluoropolymers: remarkable, high value added materials applied in surfactants, optical fibres, biomaterials, coatings and membranes for fuel cells - For immediate use by today's engineers, industrial and academic scientists, and researchers - Written to enable self-managed reading and learning, being both a source of data and a reference
Concise Handbook of Fluorocarbon Gases

This book describes fluorocarbons gases’ preparation process, properties, applications and their evolution over time. The impact of fluorocarbons on the ozone layer and global and the development to mitigate those effects have been specially emphasized. The first major industrial fluorinated compound was developed in the 1920’s, to replace ammonia and sulfur dioxide refrigerants, at the General Motors Frigidaire Division by Thomas Midgley, Jr. and Albert Leon Henne. They developed a family of fluorocarbons trademarked Freon® for auto air conditioning units revolutionizing the auto industry. Other applications were developed over time including fire extinguishers, propellants, blowing agents, cleaners, anesthesia, artificial blood and others impacting every facet of life. In spite of being in broad global use for nearly a century, fluorocarbon gases have gone through great evolution during the last few decades. In the 1980s it was discovered chlorofluorocarbon (CFC) gases are harmful to the ozone layer, mainly because of their chlorine content. Chlorine was released in the upper atmosphere when chlorofluorocarbon molecules were broken down by the high energy cosmic radiation. CFCs were progressively banned following the Montreal Protocol of 1987. CFCs were replaced by fluorinated gases containing either less chlorine (hydrofluoro-chlorocarbons, or HCFCs), which are much less damaging (about 90% less) to the ozone layer or with fluorinated gases containing no chlorine, i.e. hydrofluorocarbons or HFCs. HFC have no impact on the ozone layer but impact global warming detrimentally. HFCs are usable without need for changes to the existing refrigeration or air conditioning installations. More recently hydrofluoroolefins (HFOs), which have little or no negative impact on global warming, have been developed to replace or reduce the use of HFCs. HFOs are used as single compounds or in blends. Research and development continues to develop and replace the HCFCs and HFCs completely with environmentally friendly products. Concise Handbook of Fluorocarbon Gases presents a reference and text for the commercial fluorocarbon gases which have great many application in a wide range of industries such as refrigeration and air conditioning, as well as consumer products.
Handbook of Specialty Fluorinated Polymers

Fluoropolymers are used in applications demanding service at enhanced temperature while maintaining their structural integrity and have excellent combination of chemical, physical and mechanical properties. Advancements in materials and processing technology mean that a huge amount of research is currently taking place into new, high performance applications for specialty fluorinated polymers. This book is a complete review of the current research in synthesizing new fluorinated high performance polymers and their application in the field of low dielectric constant materials, membrane based separation (gas and liquid) and proton exchange membranes. Special emphasis is given to the preparation of soluble high performance polymers by incorporating fluorine and different structural elements so as to use these classes of polymers in different membrane based applications, including low dielectric constant materials, gas separation, pervaporation, proton exchange membranes in fuel cells, and more. The coverage of processing properties and commercial aspects - as well as a practical assessment of the advantages and disadvantages of specialty fluoropolymers compared to other materials - enables engineers and product designers to apply the latest scientific developments in this area in a practical setting. Thorough coverage of modern applications for specialty fluorinated polymers, including membranes and coatings – giving insight into recent research and the future direction of this technology Brings researchers and engineers up to date with the latest developments in specialty fluoropolymers, to assist in future materials research and part design Includes detailed assessment of the advantages and shortcomings of specialty fluorinated polymers, for ease of comparison with alternative materials