Weak Convergence And Its Applications

Download Weak Convergence And Its Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Weak Convergence And Its Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Weak Convergence and Its Applications

Weak convergence of stochastic processes is one of most important theories in probability theory. Not only probability experts but also more and more statisticians are interested in it. In the study of statistics and econometrics, some problems cannot be solved by the classical method. In this book, we will introduce some recent development of modern weak convergence theory to overcome defects of classical theory.Contents: "The Definition and Basic Properties of Weak Convergence: "Metric SpaceThe Definition of Weak Convergence of Stochastic Processes and Portmanteau TheoremHow to Verify the Weak Convergence?Two Examples of Applications of Weak Convergence"Convergence to the Independent Increment Processes: "The Basic Conditions of Convergence to the Gaussian Independent Increment ProcessesDonsker Invariance PrincipleConvergence of Poisson Point ProcessesTwo Examples of Applications of Point Process Method"Convergence to Semimartingales: "The Conditions of Tightness for Semimartingale SequenceWeak Convergence to SemimartingaleWeak Convergence to Stochastic Integral I: The Martingale Convergence ApproachWeak Convergence to Stochastic Integral II: Kurtz and Protter's ApproachStable Central Limit Theorem for SemimartingalesAn Application to Stochastic Differential EquationsAppendix: The Predictable Characteristics of Semimartingales"Convergence of Empirical Processes: "Classical Weak Convergence of Empirical ProcessesWeak Convergence of Marked Empirical ProcessesWeak Convergence of Function Index Empirical ProcessesWeak Convergence of Empirical Processes Involving Time-Dependent dataTwo Examples of Applications in Statistics Readership: Graduate students and researchers in probability & statistics and econometrics.
Empirical Processes with Applications to Statistics

Originally published in 1986, this valuable reference provides a detailed treatment of limit theorems and inequalities for empirical processes of real-valued random variables. It also includes applications of the theory to censored data, spacings, rank statistics, quantiles, and many functionals of empirical processes, including a treatment of bootstrap methods, and a summary of inequalities that are useful for proving limit theorems. At the end of the Errata section, the authors have supplied references to solutions for 11 of the 19 Open Questions provided in the book's original edition.
Weak Convergence of Financial Markets

Author: Jean-Luc Prigent
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-14
A comprehensive overview of weak convergence of stochastic processes and its application to the study of financial markets. Split into three parts, the first recalls the mathematics of stochastic processes and stochastic calculus with special emphasis on contiguity properties and weak convergence of stochastic integrals. The second part is devoted to the analysis of financial theory from the convergence point of view. The main problems such as portfolio optimization, option pricing and hedging are examined, especially when considering discrete-time approximations of continuous-time dynamics. The third part deals with lattice- and tree-based computational procedures for option pricing both on stocks and stochastic bonds. More general discrete approximations are also introduced and detailed.