Wavelets In Physics

Download Wavelets In Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Wavelets In Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Wavelets in Physics

Author: J. C. van den Berg
language: en
Publisher: Cambridge University Press
Release Date: 1999-08-19
This book surveys the application of the recently developed technique of the wavelet transform to a wide range of physical fields, including astrophysics, turbulence, meteorology, plasma physics, atomic and solid state physics, multifractals occurring in physics, biophysics (in medicine and physiology) and mathematical physics. The wavelet transform can analyze scale-dependent characteristics of a signal (or image) locally, unlike the Fourier transform, and more flexibly than the windowed Fourier transform developed by Gabor fifty years ago. The continuous wavelet transform is used mostly for analysis, but the discrete wavelet transform allows very fast compression and transmission of data and speeds up numerical calculation, and is applied, for example, in the solution of partial differential equations in physics. This book will be of interest to graduate students and researchers in many fields of physics, and to applied mathematicians and engineers interested in physical application.
Wavelets

Author: Jean-Michel Combes
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The last two subjects mentioned in the title "Wavelets, Time Frequency Methods and Phase Space" are so well established that they do not need any explanations. The first is related to them, but a short introduction is appropriate since the concept of wavelets emerged fairly recently. Roughly speaking, a wavelet decomposition is an expansion of an arbitrary function into smooth localized contributions labeled by a scale and a position pa rameter. Many of the ideas and techniques related to such expansions have existed for a long time and are widely used in mathematical analysis, theoretical physics and engineering. However, the rate of progress increased significantly when it was realized that these ideas could give rise to straightforward calculational methods applicable to different fields. The interdisciplinary structure (R.C.P. "Ondelettes") of the C.N.R.S. and help from the Societe Nationale Elf-Aquitaine greatly fostered these developments. The conference, the proceedings of which are contained in this volume, was held at the Centre National de Rencontres Mathematiques (C.N.R.M) in Marseille from December 14-18, 1987 and bought together an interdisciplinary mix of par ticipants. We hope that these proceedings will convey to the reader some of the excitement and flavor of the meeting.