Wave Pipelining Theory And Cmos Implementation


Download Wave Pipelining Theory And Cmos Implementation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Wave Pipelining Theory And Cmos Implementation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Wave Pipelining: Theory and CMOS Implementation


Wave Pipelining: Theory and CMOS Implementation

Author: C. Thomas Gray

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





The quest for higher performance digital systems for applications such as gen eral purpose computing, signal/image processing, and telecommunications and an increasing cost consciousness have led to a major thrust for high speed VLSI systems implemented in inexpensive and widely available technologies such as CMOS. This monograph, based on the first author's doctoral dissertation, con centrates on the technique of wave pipelining as one method toward achieving this goal. The primary focus of this monograph is to provide a coherent pre sentation of the theory of wave pipelined operation of digital circuits and to discuss practical design techniques for the realization of wave pipelined circuits in the CMOS technology. Wave pipelining can be applied to a variety of cir cuits for increased performance. For example, many architectures that support systolic computation lend themselves to wave pipelined realization. Also, the wave pipeline design methodology emphasizes the role of controlled clock skew in extracting enhanced performance from circuits that are not deeply pipelined. Wave pipelining (also known as maximal rate pipelining) is a timing method ology used in digital systems to increase the number of effective pipeline stages without increasing the number of physical registers in the pipeline. Using this technique, new data is applied to the inputs of a combinational logic block be fore the outputs due to previous inputs are available thus effectively pipelining the combinational logic and maximizing the utilization of the logic.

High Performance Clock Distribution Networks


High Performance Clock Distribution Networks

Author: Eby G. Friedman

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





A number of fundamental topics in the field of high performance clock distribution networks is covered in this book. High Performance Clock Distribution Networks is composed of ten contributions from authors at academic and industrial institutions. Topically, these contributions can be grouped within three primary areas. The first topic area deals with exploiting the localized nature of clock skew. The second topic area deals with the implementation of these clock distribution networks, while the third topic area considers more long-range aspects of next-generation clock distribution networks. High Performance Clock Distribution Networks presents a number of interesting strategies for designing and building high performance clock distribution networks. Many aspects of the ideas presented in these contributions are being developed and applied today in next-generation high-performance microprocessors.

Pipelined Adaptive Digital Filters


Pipelined Adaptive Digital Filters

Author: Naresh R. Shanbhag

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





Adaptive filtering is commonly used in many communication applications including speech and video predictive coding, mobile radio, ISDN subscriber loops, and multimedia systems. Existing adaptive filtering topologies are non-concurrent and cannot be pipelined. Pipelined Adaptive Digital Filters presents new pipelined topologies which are useful in reducing area and power and in increasing speed. If the adaptive filter portion of a system suffers from a power-speed-area bottleneck, a solution is provided. Pipelined Adaptive Digital Filters is required reading for all users of adaptive digital filtering algorithms. Algorithm, application and integrated circuit chip designers can learn how their algorithms can be tailored and implemented with lower area and power consumption and with higher speed. The relaxed look-ahead techniques are used to design families of new topologies for many adaptive filtering applications including least mean square and lattice adaptive filters, adaptive differential pulse code modulation coders, adaptive differential vector quantizers, adaptive decision feedback equalizers and adaptive Kalman filters. Those who use adaptive filtering in communications, signal and image processing algorithms can learn the basis of relaxed look-ahead pipelining and can use their own relaxations to design pipelined topologies suitable for their applications. Pipelined Adaptive Digital Filters is especially useful to designers of communications, speech, and video applications who deal with adaptive filtering, those involved with design of modems, wireless systems, subscriber loops, beam formers, and system identification applications. This book can also be used as a text for advanced courses on the topic.