Vlsi For Artificial Intelligence And Neural Networks


Download Vlsi For Artificial Intelligence And Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Vlsi For Artificial Intelligence And Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

VLSI for Artificial Intelligence and Neural Networks


VLSI for Artificial Intelligence and Neural Networks

Author: Jose G. Delgado-Frias

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This book is an edited selection of the papers presented at the International Workshop on VLSI for Artifidal Intelligence and Neural Networks which was held at the University of Oxford in September 1990. Our thanks go to all the contributors and especially to the programme committee for all their hard work. Thanks are also due to the ACM-SIGARCH, the IEEE Computer Society, and the lEE for publicizing the event and to the University of Oxford and SUNY-Binghamton for their active support. We are particularly grateful to Anna Morris, Maureen Doherty and Laura Duffy for coping with the administrative problems. Jose Delgado-Frias Will Moore April 1991 vii PROLOGUE Artificial intelligence and neural network algorithms/computing have increased in complexity as well as in the number of applications. This in tum has posed a tremendous need for a larger computational power than can be provided by conventional scalar processors which are oriented towards numeric and data manipulations. Due to the artificial intelligence requirements (symbolic manipulation, knowledge representation, non-deterministic computations and dynamic resource allocation) and neural network computing approach (non-programming and learning), a different set of constraints and demands are imposed on the computer architectures for these applications.

VLSI for Neural Networks and Artificial Intelligence


VLSI for Neural Networks and Artificial Intelligence

Author: Jose G. Delgado-Frias

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-06-29


DOWNLOAD





Neural network and artificial intelligence algorithrns and computing have increased not only in complexity but also in the number of applications. This in turn has posed a tremendous need for a larger computational power that conventional scalar processors may not be able to deliver efficiently. These processors are oriented towards numeric and data manipulations. Due to the neurocomputing requirements (such as non-programming and learning) and the artificial intelligence requirements (such as symbolic manipulation and knowledge representation) a different set of constraints and demands are imposed on the computer architectures/organizations for these applications. Research and development of new computer architectures and VLSI circuits for neural networks and artificial intelligence have been increased in order to meet the new performance requirements. This book presents novel approaches and trends on VLSI implementations of machines for these applications. Papers have been drawn from a number of research communities; the subjects span analog and digital VLSI design, computer design, computer architectures, neurocomputing and artificial intelligence techniques. This book has been organized into four subject areas that cover the two major categories of this book; the areas are: analog circuits for neural networks, digital implementations of neural networks, neural networks on multiprocessor systems and applications, and VLSI machines for artificial intelligence. The topics that are covered in each area are briefly introduced below.

Neural Information Processing and VLSI


Neural Information Processing and VLSI

Author: Bing J. Sheu

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has beenespecially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.