Neural Information Processing And Vlsi

Download Neural Information Processing And Vlsi PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Information Processing And Vlsi book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Neural Information Processing and VLSI

Author: Bing J. Sheu
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has beenespecially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
Advances in Neural Information Processing Systems 19

The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.
VLSI Design of Neural Networks

Author: Ulrich Ramacher
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The early era of neural network hardware design (starting at 1985) was mainly technology driven. Designers used almost exclusively analog signal processing concepts for the recall mode. Learning was deemed not to cause a problem because the number of implementable synapses was still so low that the determination of weights and thresholds could be left to conventional computers. Instead, designers tried to directly map neural parallelity into hardware. The architectural concepts were accordingly simple and produced the so called interconnection problem which, in turn, made many engineers believe it could be solved by optical implementation in adequate fashion only. Furthermore, the inherent fault-tolerance and limited computation accuracy of neural networks were claimed to justify that little effort is to be spend on careful design, but most effort be put on technology issues. As a result, it was almost impossible to predict whether an electronic neural network would function in the way it was simulated to do. This limited the use of the first neuro-chips for further experimentation, not to mention that real-world applications called for much more synapses than could be implemented on a single chip at that time. Meanwhile matters have matured. It is recognized that isolated definition of the effort of analog multiplication, for instance, would be just as inappropriate on the part ofthe chip designer as determination of the weights by simulation, without allowing for the computing accuracy that can be achieved, on the part of the user.