Value Distribution Theory Of The Gauss Map Of Minimal Surfaces In Rm

Download Value Distribution Theory Of The Gauss Map Of Minimal Surfaces In Rm PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Value Distribution Theory Of The Gauss Map Of Minimal Surfaces In Rm book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Value Distribution Theory of the Gauss Map of Minimal Surfaces in Rm

Author: Hirotaka Fujimoto
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This book presents in a systematic and almost self-contained way the striking analogy between classical function theory, in particular the value distribution theory of holomorphic curves in projective space, on the one hand, and important and beautiful properties of the Gauss map of minimal surfaces on the other hand. Both theories are developed in the text, including many results of recent research. The relations and analogies between them become completely clear. The book is written for interested graduate students and mathematicians, who want to become more familiar with this modern development in the two classical areas of mathematics, but also for those, who intend to do further research on minimal surfaces.
Minimal Surfaces through Nevanlinna Theory

Author: Min Ru
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2023-05-08
The study of minimal surfaces is an important subject in differential geometry, and Nevanlinna theory is an important subject in complex analysis and complex geometry. This book discusses the interaction between these two subjects. In particular, it describes the study of the value distribution properties of the Gauss map of minimal surfaces through Nevanlinna theory, a project initiated by the prominent differential geometers Shiing-Shen Chern and Robert Osserman.
Minimal Surfaces

Author: Ulrich Dierkes
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-08-16
Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem andTomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.