Using Artificial Neural Networks For Analog Integrated Circuit Design Automation

Download Using Artificial Neural Networks For Analog Integrated Circuit Design Automation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Using Artificial Neural Networks For Analog Integrated Circuit Design Automation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Using Artificial Neural Networks for Analog Integrated Circuit Design Automation

This book addresses the automatic sizing and layout of analog integrated circuits (ICs) using deep learning (DL) and artificial neural networks (ANN). It explores an innovative approach to automatic circuit sizing where ANNs learn patterns from previously optimized design solutions. In opposition to classical optimization-based sizing strategies, where computational intelligence techniques are used to iterate over the map from devices’ sizes to circuits’ performances provided by design equations or circuit simulations, ANNs are shown to be capable of solving analog IC sizing as a direct map from specifications to the devices’ sizes. Two separate ANN architectures are proposed: a Regression-only model and a Classification and Regression model. The goal of the Regression-only model is to learn design patterns from the studied circuits, using circuit’s performances as input features and devices’ sizes as target outputs. This model can size a circuit given its specifications for a single topology. The Classification and Regression model has the same capabilities of the previous model, but it can also select the most appropriate circuit topology and its respective sizing given the target specification. The proposed methodology was implemented and tested on two analog circuit topologies.
Efficient Analog Integrated Circuit Sizing with GenAI

This book focuses on the automation of analog integrated circuit design, particularly the sizing process. It introduces an innovative approach leveraging generative artificial intelligence, specifically denoising diffusion probabilistic models (DDPM). The proposed methodology provides a robust solution for generating circuit designs that meet specific performance constraints, offering a significant improvement over conventional techniques. By integrating advanced machine learning models into the design workflow, the book showcases a transformative way to streamline the process while maintaining accuracy and reliability.
Machine Learning Applications in Electronic Design Automation

This book serves as a single-source reference to key machine learning (ML) applications and methods in digital and analog design and verification. Experts from academia and industry cover a wide range of the latest research on ML applications in electronic design automation (EDA), including analysis and optimization of digital design, analysis and optimization of analog design, as well as functional verification, FPGA and system level designs, design for manufacturing (DFM), and design space exploration. The authors also cover key ML methods such as classical ML, deep learning models such as convolutional neural networks (CNNs), graph neural networks (GNNs), generative adversarial networks (GANs) and optimization methods such as reinforcement learning (RL) and Bayesian optimization (BO). All of these topics are valuable to chip designers and EDA developers and researchers working in digital and analog designs and verification.