Trigonometric And Hyperbolic Generated Approximation Theory

Download Trigonometric And Hyperbolic Generated Approximation Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Trigonometric And Hyperbolic Generated Approximation Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Trigonometric And Hyperbolic Generated Approximation Theory

Author: George A Anastassiou
language: en
Publisher: World Scientific
Release Date: 2024-11-28
This monograph is a testimony of the impact over Computational Analysis of some new trigonometric and hyperbolic types of Taylor's formulae with integral remainders producing a rich collection of approximations of a very wide spectrum.This volume covers perturbed neural network approximations by themselves and with their connections to Brownian motion and stochastic processes, univariate and multivariate analytical inequalities (both ordinary and fractional), Korovkin theory, and approximations by singular integrals (both univariate and multivariate cases). These results are expected to find applications in the many areas of Pure and Applied Mathematics, Computer Science, Engineering, Artificial Intelligence, Machine Learning, Deep Learning, Analytical Inequalities, Approximation Theory, Statistics, Economics, amongst others. Thus, this treatise is suitable for researchers, graduate students, practitioners and seminars of related disciplines, and serves well as an invaluable resource for all Science and Engineering libraries.
Advanced Topics On Semilinear Evolution Equations

Author: Mouffak Benchohra
language: en
Publisher: World Scientific
Release Date: 2025-01-07
Differential evolution equations serve as mathematical representations that capture the progression or transformation of functions or systems as time passes. Currently, differential equations continue to be an active and thriving area of study, with continuous advancements in mathematical methodologies and their practical applications spanning diverse fields such as physics, engineering, and economics. In the late 20th century, the notion of 'Differential Evolution Equations' emerged as a distinct field applied to optimization and machine learning challenges. Evolution equations hold immense importance in numerous realms of applied mathematics and have experienced notable prominence in recent times.This book delves into the study of several classes of equations, aiming to investigate the existence of mild and periodic mild solutions and their properties such as approximate controllability, complete controllability and attractivity, under various conditions. By examining diverse problems involving second-order semilinear evolution equations, differential and integro-differential equations with state-dependent delay, random effects, and functional differential equations with delay and random effects, we hope to contribute to the advancement of mathematical knowledge and provide researchers, academicians, and students with a solid foundation for further exploration in this field. Throughout this book, we explore different mathematical frameworks, employing Fréchet spaces and Banach spaces to provide a comprehensive analysis. Our investigation extends beyond traditional solutions, encompassing the study of asymptotically almost automorphic mild solutions, periodic mild solutions, and impulsive integro-differential equations. These topics shed light on the behavior of equations in both bounded and unbounded domains, offering valuable insights into the dynamics of functional evolution equations.
Generalized Trigonometric and Hyperbolic Functions

Generalized Trigonometric and Hyperbolic Functions highlights, to those in the area of generalized trigonometric functions, an alternative path to the creation and analysis of these classes of functions. Previous efforts have started with integral representations for the inverse generalized sine functions, followed by the construction of the associated cosine functions, and from this, various properties of the generalized trigonometric functions are derived. However, the results contained in this book are based on the application of both geometrical phase space and dynamical systems methodologies. Features Clear, direct construction of a new set of generalized trigonometric and hyperbolic functions Presentation of why x2+y2 = 1, and related expressions, may be interpreted in three distinct ways All the constructions, proofs, and derivations can be readily followed and understood by students, researchers, and professionals in the natural and mathematical sciences