Advanced Topics On Semilinear Evolution Equations


Download Advanced Topics On Semilinear Evolution Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Topics On Semilinear Evolution Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Advanced Topics On Semilinear Evolution Equations


Advanced Topics On Semilinear Evolution Equations

Author: Mouffak Benchohra

language: en

Publisher: World Scientific

Release Date: 2025-01-07


DOWNLOAD





Differential evolution equations serve as mathematical representations that capture the progression or transformation of functions or systems as time passes. Currently, differential equations continue to be an active and thriving area of study, with continuous advancements in mathematical methodologies and their practical applications spanning diverse fields such as physics, engineering, and economics. In the late 20th century, the notion of 'Differential Evolution Equations' emerged as a distinct field applied to optimization and machine learning challenges. Evolution equations hold immense importance in numerous realms of applied mathematics and have experienced notable prominence in recent times.This book delves into the study of several classes of equations, aiming to investigate the existence of mild and periodic mild solutions and their properties such as approximate controllability, complete controllability and attractivity, under various conditions. By examining diverse problems involving second-order semilinear evolution equations, differential and integro-differential equations with state-dependent delay, random effects, and functional differential equations with delay and random effects, we hope to contribute to the advancement of mathematical knowledge and provide researchers, academicians, and students with a solid foundation for further exploration in this field. Throughout this book, we explore different mathematical frameworks, employing Fréchet spaces and Banach spaces to provide a comprehensive analysis. Our investigation extends beyond traditional solutions, encompassing the study of asymptotically almost automorphic mild solutions, periodic mild solutions, and impulsive integro-differential equations. These topics shed light on the behavior of equations in both bounded and unbounded domains, offering valuable insights into the dynamics of functional evolution equations.

Advanced Topics on Semilinear Evolution Equations


Advanced Topics on Semilinear Evolution Equations

Author: GASTON MANDATA. BENCHOHRA N'GUEREKATA (MOUFFAK. SALIM, ABDELKRIM.)

language: en

Publisher: World Scientific Publishing Company

Release Date: 2025-02-07


DOWNLOAD





Differential evolution equations serve as mathematical representations that capture the progression or transformation of functions or systems as time passes. Currently, differential equations continue to be an active and thriving area of study, with continuous advancements in mathematical methodologies and their practical applications spanning diverse fields such as physics, engineering, and economics. In the late 20th century, the notion of 'Differential Evolution Equations' emerged as a distinct field applied to optimization and machine learning challenges. Evolution equations hold immense importance in numerous realms of applied mathematics and have experienced notable prominence in recent times.This book delves into the study of several classes of equations, aiming to investigate the existence of mild and periodic mild solutions and their properties such as approximate controllability, complete controllability and attractivity, under various conditions. By examining diverse problems involving second-order semilinear evolution equations, differential and integro-differential equations with state-dependent delay, random effects, and functional differential equations with delay and random effects, we hope to contribute to the advancement of mathematical knowledge and provide researchers, academicians, and students with a solid foundation for further exploration in this field. Throughout this book, we explore different mathematical frameworks, employing Fréchet spaces and Banach spaces to provide a comprehensive analysis. Our investigation extends beyond traditional solutions, encompassing the study of asymptotically almost automorphic mild solutions, periodic mild solutions, and impulsive integro-differential equations. These topics shed light on the behavior of equations in both bounded and unbounded domains, offering valuable insights into the dynamics of functional evolution equations.

Strong and Weak Approximation of Semilinear Stochastic Evolution Equations


Strong and Weak Approximation of Semilinear Stochastic Evolution Equations

Author: Raphael Kruse

language: en

Publisher: Springer

Release Date: 2013-11-18


DOWNLOAD





In this book we analyze the error caused by numerical schemes for the approximation of semilinear stochastic evolution equations (SEEq) in a Hilbert space-valued setting. The numerical schemes considered combine Galerkin finite element methods with Euler-type temporal approximations. Starting from a precise analysis of the spatio-temporal regularity of the mild solution to the SEEq, we derive and prove optimal error estimates of the strong error of convergence in the first part of the book. The second part deals with a new approach to the so-called weak error of convergence, which measures the distance between the law of the numerical solution and the law of the exact solution. This approach is based on Bismut’s integration by parts formula and the Malliavin calculus for infinite dimensional stochastic processes. These techniques are developed and explained in a separate chapter, before the weak convergence is proven for linear SEEq.