Transactional Memory Coherence And Consistency


Download Transactional Memory Coherence And Consistency PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Transactional Memory Coherence And Consistency book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

A Primer on Memory Consistency and Cache Coherence, Second Edition


A Primer on Memory Consistency and Cache Coherence, Second Edition

Author: Vijay Nagarajan

language: en

Publisher: Springer Nature

Release Date: 2022-05-31


DOWNLOAD





Many modern computer systems, including homogeneous and heterogeneous architectures, support shared memory in hardware. In a shared memory system, each of the processor cores may read and write to a single shared address space. For a shared memory machine, the memory consistency model defines the architecturally visible behavior of its memory system. Consistency definitions provide rules about loads and stores (or memory reads and writes) and how they act upon memory. As part of supporting a memory consistency model, many machines also provide cache coherence protocols that ensure that multiple cached copies of data are kept up-to-date. The goal of this primer is to provide readers with a basic understanding of consistency and coherence. This understanding includes both the issues that must be solved as well as a variety of solutions. We present both high-level concepts as well as specific, concrete examples from real-world systems. This second edition reflects a decade of advancements since the first edition and includes, among other more modest changes, two new chapters: one on consistency and coherence for non-CPU accelerators (with a focus on GPUs) and one that points to formal work and tools on consistency and coherence.

Transactional Memory


Transactional Memory

Author: James R. Larus

language: en

Publisher: Springer Nature

Release Date: 2022-12-06


DOWNLOAD





The advent of multicore processors has renewed interest in the idea of incorporating transactions into the programming model used to write parallel programs. This approach, known as transactional memory, offers an alternative, and hopefully better, way to coordinate concurrent threads. The ACI (atomicity, consistency, isolation) properties of transactions provide a foundation to ensure that concurrent reads and writes of shared data do not produce inconsistent or incorrect results. At a higher level, a computation wrapped in a transaction executes atomically – either it completes successfully and commits its result in its entirety or it aborts. In addition, isolation ensures the transaction produces the same result as if no other transactions were executing concurrently. Although transactions are not a parallel programming panacea, they shift much of the burden of synchronizing and coordinating parallel computations from a programmer to a compiler, runtime system, and hardware. The challenge for the system implementers is to build an efficient transactional memory infrastructure. This book presents an overview of the state of the art in the design and implementation of transactional memory systems, as of early summer 2006.

Transactional Memory. Foundations, Algorithms, Tools, and Applications


Transactional Memory. Foundations, Algorithms, Tools, and Applications

Author: Rachid Guerraoui

language: en

Publisher: Springer

Release Date: 2014-12-29


DOWNLOAD





The advent of multi-core architectures and cloud-computing has brought parallel programming into the mainstream of software development. Unfortunately, writing scalable parallel programs using traditional lock-based synchronization primitives is well known to be a hard, time consuming and error-prone task, mastered by only a minority of specialized programmers. Building on the familiar abstraction of atomic transactions, Transactional Memory (TM) promises to free programmers from the complexity of conventional synchronization schemes, simplifying the development and verification of concurrent programs, enhancing code reliability, and boosting productivity. Over the last decade TM has been subject to intense research on a broad range of aspects including hardware and operating systems support, language integration, as well as algorithms and theoretical foundations. On the industrial side, the major players of the software and hardware markets have been up-front in the research and development of prototypal products providing support for TM systems. This has recently led to the introduction of hardware TM implementations on mainstream commercial microprocessors and to the integration of TM support for the world’s leading open source compiler. In such a vast inter-disciplinary domain, the Euro-TM COST Action (IC1001) has served as a catalyzer and a bridge for the various research communities looking at disparate, yet subtly interconnected, aspects of TM. This book emerged from the idea having Euro-TM experts compile recent results in the TM area in a single and consistent volume. Contributions have been carefully selected and revised to provide a broad coverage of several fundamental issues associated with the design and implementation of TM systems, including their theoretical underpinnings and algorithmic foundations, programming language integration and verification tools, hardware supports, distributed TM systems, self-tuning mechanisms, as well as lessons learnt from building complex TM-based applications.