Topological Methods For Delay And Ordinary Differential Equations

Download Topological Methods For Delay And Ordinary Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Topological Methods For Delay And Ordinary Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Topological Methods for Delay and Ordinary Differential Equations

This volume explores the application of topological techniques in the study of delay and ordinary differential equations with a particular focus on continuum mechanics. Chapters, written by internationally recognized researchers in the field, present results on problems of existence, multiplicity localization, bifurcation of solutions, and more. Topological methods are used throughout, including degree theory, fixed point index theory, and classical and recent fixed point theorems. A wide variety of applications to continuum mechanics are provided as well, such as chemostats, non-Newtonian fluid flow, and flows in phase space. Topological Methods for Delay and Ordinary Differential Equations will be a valuable resource for researchers interested in differential equations, functional analysis, topology, and the applied sciences.
Topological Methods for Ordinary Differential Equations

The volume contains the texts of four courses, given by the authors at a summer school that sought to present the state of the art in the growing field of topological methods in the theory of o.d.e. (in finite and infinitedimension), and to provide a forum for discussion of the wide variety of mathematical tools which are involved. The topics covered range from the extensions of the Lefschetz fixed point and the fixed point index on ANR's, to the theory of parity of one-parameter families of Fredholm operators, and from the theory of coincidence degree for mappings on Banach spaces to homotopy methods for continuation principles. CONTENTS: P. Fitzpatrick: The parity as an invariant for detecting bifurcation of the zeroes of one parameter families of nonlinear Fredholm maps.- M. Martelli: Continuation principles and boundary value problems.- J. Mawhin: Topological degree and boundary value problems for nonlinear differential equations.- R.D. Nussbaum: The fixed point index and fixed point theorems.
Topological Methods for Differential Equations and Inclusions

Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.