Time Series Forecasting Fundamentals


Download Time Series Forecasting Fundamentals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Time Series Forecasting Fundamentals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Forecasting: principles and practice


Forecasting: principles and practice

Author: Rob J Hyndman

language: en

Publisher: OTexts

Release Date: 2018-05-08


DOWNLOAD





Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Fundamentals of Forecasting Using Excel


Fundamentals of Forecasting Using Excel

Author: Kenneth D. Lawrence

language: en

Publisher: Industrial Press Inc.

Release Date: 2009


DOWNLOAD





Forecasting is an integral part of almost all business enterprises. This book provides readers with the tools to analyze their data, develop forecasting models and present the results in Excel. Progressing from data collection, data presentation, to a step-by-step development of the forecasting techniques, this essential text covers techniques that include but not limited to time series-moving average, exponential smoothing, trending, simple and multiple regression, and Box-Jenkins. And unlike other products of its kind that require either high-priced statistical software or Excel add-ins, this book does not require such software. It can be used both as a primary text and as a supplementary text. Highlights the use of Excel screen shots, data tables, and graphs. Features Full Scale Use of Excel in Forecasting without the Use of Specialized Forecast Packages Includes Excel templates. Emphasizes the practical application of forecasting. Provides coverage of Special Forecasting, including New Product Forecasting, Network Models Forecasting, Links to Input/Output Modeling, and Combination of Forecasting.

Hands-on Time Series Analysis with Python


Hands-on Time Series Analysis with Python

Author: B V Vishwas

language: en

Publisher: Apress

Release Date: 2020-08-25


DOWNLOAD





Learn the concepts of time series from traditional to bleeding-edge techniques. This book uses comprehensive examples to clearly illustrate statistical approaches and methods of analyzing time series data and its utilization in the real world. All the code is available in Jupyter notebooks. You'll begin by reviewing time series fundamentals, the structure of time series data, pre-processing, and how to craft the features through data wrangling. Next, you'll look at traditional time series techniques like ARMA, SARIMAX, VAR, and VARMA using trending framework like StatsModels and pmdarima. The book also explains building classification models using sktime, and covers advanced deep learning-based techniques like ANN, CNN, RNN, LSTM, GRU and Autoencoder to solve time series problem using Tensorflow. It concludes by explaining the popular framework fbprophet for modeling time series analysis. After reading Hands -On Time Series Analysis with Python, you'll be able to apply these new techniques in industries, such as oil and gas, robotics, manufacturing, government, banking, retail, healthcare, and more. What You'll Learn: · Explains basics to advanced concepts of time series · How to design, develop, train, and validate time-series methodologies · What are smoothing, ARMA, ARIMA, SARIMA,SRIMAX, VAR, VARMA techniques in time series and how to optimally tune parameters to yield best results · Learn how to leverage bleeding-edge techniques such as ANN, CNN, RNN, LSTM, GRU, Autoencoder to solve both Univariate and multivariate problems by using two types of data preparation methods for time series. · Univariate and multivariate problem solving using fbprophet. Who This Book Is For Data scientists, data analysts, financial analysts, and stock market researchers