Three Courses On Partial Differential Equations

Download Three Courses On Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Three Courses On Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Partial Differential Equations in Action

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Three Courses on Partial Differential Equations

Author: Eric Sonnendrücker
language: en
Publisher: Walter de Gruyter
Release Date: 2008-08-22
Modeling, in particular with partial differential equations, plays an ever growing role in the applied sciences. Hence its mathematical understanding is an important issue for today's research. This book provides an introduction to three different topics in partial differential equations arising from applications. The subject of the first course by Michel Chipot (Zurich) is equilibrium positions of several disks rolling on a wire. In particular, existence and uniqueness of and the exact position for an equilibrium are discussed. The second course by Josselin Garnier (Toulouse) deals with problems arising from acoustics and geophysics where waves propagate in complicated media, the properties of which can only be described statistically. It turns out that if the different scales presented in the problem can be separated, there exists a deterministic result. The third course by Otared Kavian (Versailles St.-Quentin) is devoted to so-called inverse problems where one or several parameters of a partial differential equation need to be determined by using, for instance, measurements on the boundary of the domain. The question that arises naturally is what information is necessary to determine the unknown parameters. This question is answered in different settings. The text is addressed to students and researchers with a basic background in partial differential equations.
An Introduction to Partial Differential Equations

Author: Michael Renardy
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-04-18
Partial differential equations are fundamental to the modeling of natural phenomena, arising in every field of science. Consequently, the desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians; it has inspired such diverse fields as complex function theory, functional analysis and algebraic topology. Like algebra, topology, and rational mechanics, partial differential equations are a core area of mathematics. This book aims to provide the background necessary to initiate work on a Ph.D. thesis in PDEs for beginning graduate students. Prerequisites include a truly advanced calculus course and basic complex variables. Lebesgue integration is needed only in Chapter 10, and the necessary tools from functional analysis are developed within the course. The book can be used to teach a variety of different courses. This new edition features new problems throughout and the problems have been rearranged in each section from simplest to most difficult. New examples have also been added. The material on Sobolev spaces has been rearranged and expanded. A new section on nonlinear variational problems with "Young-measure" solutions appears. The reference section has also been expanded.