An Introduction To Partial Differential Equations


Download An Introduction To Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

An Introduction to Partial Differential Equations


An Introduction to Partial Differential Equations

Author: Michael Renardy

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-04-18


DOWNLOAD





Partial differential equations are fundamental to the modeling of natural phenomena, arising in every field of science. Consequently, the desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians; it has inspired such diverse fields as complex function theory, functional analysis and algebraic topology. Like algebra, topology, and rational mechanics, partial differential equations are a core area of mathematics. This book aims to provide the background necessary to initiate work on a Ph.D. thesis in PDEs for beginning graduate students. Prerequisites include a truly advanced calculus course and basic complex variables. Lebesgue integration is needed only in Chapter 10, and the necessary tools from functional analysis are developed within the course. The book can be used to teach a variety of different courses. This new edition features new problems throughout and the problems have been rearranged in each section from simplest to most difficult. New examples have also been added. The material on Sobolev spaces has been rearranged and expanded. A new section on nonlinear variational problems with "Young-measure" solutions appears. The reference section has also been expanded.

Introduction to Partial Differential Equations


Introduction to Partial Differential Equations

Author: Peter J. Olver

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-08


DOWNLOAD





This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Introduction to Partial Differential Equations


Introduction to Partial Differential Equations

Author: K. Sankara Rao

language: en

Publisher: PHI Learning Pvt. Ltd.

Release Date: 2010-07-30


DOWNLOAD





Provides students with the fundamental concepts, the underlying principles, and various well-known mathematical techniques and methods, such as Laplace and Fourier transform techniques, the variable separable method, and Green's function method, to solve partial differential equations. It is supported by miscellaneous examples to enable students to assimilate the fundamental concepts and the techniques for solving PDEs with various initial and boundary conditions.