Thermal Quantum Field Theory

Download Thermal Quantum Field Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Thermal Quantum Field Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Thermal Quantum Field Theory

Presents developments in thermal field theory. This book combines ideas from thermal theory with concepts from group theory using Lie algebras, allowing for applications not only to quantum field theory but also to quantum optics and statistical mechanics
Thermal Field Theory

Author: Michel Le Bellac
language: en
Publisher: Cambridge University Press
Release Date: 2000-07-03
Now in paperback, this text introduces the theoretical framework for describing the quark-gluon plasma, an important new state of matter. The first part of this book is a self-contained introduction to relativistic thermal field theory. Topics include the path integral approach, the real and the imaginary time formalisms, fermion fields and gauge fields at finite temperature. Useful techniques such as the evaluation of frequency sums or the use of cutting rules are illustrated on various examples. The second part of the book is devoted to recent developments, giving a detailed account of collective excitations (bosonic and fermionic), and showing how they give rise to energy scales which imply a reorganization of perturbation theory. The relation with kinetic theory is also explained. Applications to processes which occur in heavy ion collisions and in astrophysics are worked out in detail. Each chapter ends with exercises and a guide to the literature.
Basics of Thermal Field Theory

This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from the study of phase transitions and particle production rate computations, to the concept of transport and damping coefficients that play a ubiquitous role in current developments. The book serves as a self-contained textbook on relativistic thermal field theory for undergraduate and graduate students of theoretical high-energy physics.