Thermal Field Theory


Download Thermal Field Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Thermal Field Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Basics of Thermal Field Theory


Basics of Thermal Field Theory

Author: Mikko Laine

language: en

Publisher: Springer

Release Date: 2016-06-09


DOWNLOAD





This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from the study of phase transitions and particle production rate computations, to the concept of transport and damping coefficients that play a ubiquitous role in current developments. The book serves as a self-contained textbook on relativistic thermal field theory for undergraduate and graduate students of theoretical high-energy physics.

Thermal Field Theory


Thermal Field Theory

Author: Michel Le Bellac

language: en

Publisher: Cambridge University Press

Release Date: 2000-07-03


DOWNLOAD





Now in paperback, this text introduces the theoretical framework for describing the quark-gluon plasma, an important new state of matter. The first part of this book is a self-contained introduction to relativistic thermal field theory. Topics include the path integral approach, the real and the imaginary time formalisms, fermion fields and gauge fields at finite temperature. Useful techniques such as the evaluation of frequency sums or the use of cutting rules are illustrated on various examples. The second part of the book is devoted to recent developments, giving a detailed account of collective excitations (bosonic and fermionic), and showing how they give rise to energy scales which imply a reorganization of perturbation theory. The relation with kinetic theory is also explained. Applications to processes which occur in heavy ion collisions and in astrophysics are worked out in detail. Each chapter ends with exercises and a guide to the literature.

Finite-Temperature Field Theory


Finite-Temperature Field Theory

Author: Joseph I. Kapusta

language: en

Publisher: Cambridge University Press

Release Date: 2006-08-03


DOWNLOAD





The 2006 second edition of this book develops the basic formalism and theoretical techniques for studying relativistic quantum field theory at high temperature and density. Specific physical theories treated include QED, QCD, electroweak theory, and effective nuclear field theories of hadronic and nuclear matter. Topics include: functional integral representation of the partition function, diagrammatic expansions, linear response theory, screening and plasma oscillations, spontaneous symmetry breaking, Goldstone theorem, resummation and hard thermal loops, lattice gauge theory, phase transitions, nucleation theory, quark-gluon plasma, and color superconductivity. Applications to astrophysics and cosmology cover white dwarf and neutron stars, neutrino emissivity, baryon number violation in the early universe, and cosmological phase transitions. Applications to relativistic nucleus-nucleus collisions are also included. The book is written for theorists in elementary particle physics, nuclear physics, astrophysics, and cosmology. Problems are given at the end of each chapter, and numerous references to the literature are included.