Theory Of Applied Robotics Kinematics Dynamics And Control


Download Theory Of Applied Robotics Kinematics Dynamics And Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theory Of Applied Robotics Kinematics Dynamics And Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Theory of Applied Robotics


Theory of Applied Robotics

Author: Reza N. Jazar

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-11-05


DOWNLOAD





The second edition of this book would not have been possible without the comments and suggestions from my students, especially those at Columbia University. Many of the new topics introduced here are a direct result of student feedback that helped me refine and clarify the material. My intention when writing this book was to develop material that I would have liked to had available as a student. Hopefully, I have succeeded in developing a reference that covers all aspects of robotics with sufficient detail and explanation. The first edition of this book was published in 2007 and soon after its publication it became a very popular reference in the field of robotics. I wish to thank the many students and instructors who have used the book or referenced it. Your questions, comments and suggestions have helped me create the second edition. Preface This book is designed to serve as a text for engineering students. It introduces the fundamental knowledge used in robotics. This knowledge can be utilized to develop computer programs for analyzing the kinematics, dynamics, and control of robotic systems.

Theory of Applied Robotics


Theory of Applied Robotics

Author: Reza N. Jazar

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-06-14


DOWNLOAD





The second edition of this book would not have been possible without the comments and suggestions from students, especially those at Columbia University. Many of the new topics introduced here are a direct result of student feedback that helped refine and clarify the material. The intention of this book was to develop material that the author would have liked to have had available as a student. Theory of Applied Robotics: Kinematics, Dynamics, and Control (2nd Edition) explains robotics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. The second edition includes updated and expanded exercise sets and problems. New coverage includes: components and mechanisms of a robotic system with actuators, sensors and controllers, along with updated and expanded material on kinematics. New coverage is also provided in sensing and control including position sensors, speed sensors and acceleration sensors. Students, researchers, and practicing engineers alike will appreciate this user-friendly presentation of a wealth of robotics topics, most notably orientation, velocity, and forward kinematics.

Theory of Applied Robotics


Theory of Applied Robotics

Author: Reza N. Jazar

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-05-30


DOWNLOAD





This book is designed to serve as a text for engineering students. It introduces the fundamental knowledge used in robotics. This knowledge can be utilized to develop computer programs for analyzing the kinematics, dynamics, and control of robotic systems. The subject of robotics may appear overdosed by the number of available texts because the field has been growing rapidly since 1970. However, the topic remains alive with modern developments, which are closely related to the classical material. It is evident that no single text can cover the vast scope of classical and modern materials in robotics. Thus the demand for new books arises because the field continues to progress. Another factor is the trend toward analytical unification of kinematics, dynamics, and control. Classical kinematics and dynamics of robots has its roots in the work of great scientists of the past four centuries who established the methodology and understanding of the behavior of dynamic systems. The development ofdynamic science, since the beginning of the twentieth century, has moved toward analysis of controllable man-made systems. Therefore, merging the kinematics and dynamics with control theory is the expected development for robotic analysis. The other important development is the fast growing capability of ac curate and rapid numerical calculations, along with intelligent computer programming.