Data Science With Sql Server Quick Start Guide

Download Data Science With Sql Server Quick Start Guide PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science With Sql Server Quick Start Guide book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Science with SQL Server Quick Start Guide

Get unique insights from your data by combining the power of SQL Server, R and Python Key Features Use the features of SQL Server 2017 to implement the data science project life cycle Leverage the power of R and Python to design and develop efficient data models find unique insights from your data with powerful techniques for data preprocessing and analysis Book Description SQL Server only started to fully support data science with its two most recent editions. If you are a professional from both worlds, SQL Server and data science, and interested in using SQL Server and Machine Learning (ML) Services for your projects, then this is the ideal book for you. This book is the ideal introduction to data science with Microsoft SQL Server and In-Database ML Services. It covers all stages of a data science project, from businessand data understanding,through data overview, data preparation, modeling and using algorithms, model evaluation, and deployment. You will learn to use the engines and languages that come with SQL Server, including ML Services with R and Python languages and Transact-SQL. You will also learn how to choose which algorithm to use for which task, and learn the working of each algorithm. What you will learn Use the popular programming languages,T-SQL, R, and Python, for data science Understand your data with queries and introductory statistics Create and enhance the datasets for ML Visualize and analyze data using basic and advanced graphs Explore ML using unsupervised and supervised models Deploy models in SQL Server and perform predictions Who this book is for SQL Server professionals who want to start with data science, and data scientists who would like to start using SQL Server in their projects will find this book to be useful. Prior exposure to SQL Server will be helpful.
Quick Start Guide to Azure Data Factory, Azure Data Lake Server, and Azure Data Warehouse

Author: Mark Beckner
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2018
With constantly expanding options such as Azure Data Lake Server (ADLS) and Azure SQL Data Warehouse (ADW), how can developers learn the process and components required to successfully move this data? Quick Start Guide to Azure Data Factory, Azure Data Lake Server, and Azure Data Warehouse teaches you the basics of moving data between Azure SQL solutions using Azure Data Factory. Discover how to build and deploy each of the components needed to integrate data in the cloud with local SQL databases. Mark Beckner's step by step instructions on how to build each component, how to test processes and debug, and how to track and audit the movement of data, will help you to build your own solutions instantly and efficiently. This book includes information on configuration, development, and administration of a fully functional solution and outlines all of the components required for moving data from a local SQL instance through to a fully functional data warehouse with facts and dimensions.
SQL for Data Scientists

Author: Renee M. P. Teate
language: en
Publisher: John Wiley & Sons
Release Date: 2021-08-17
Jump-start your career as a data scientist—learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that’s dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn’t cover SQL broadly. Instead, you’ll learn the subset of SQL skills that data analysts and data scientists use frequently. You’ll also gain practical advice and direction on "how to think about constructing your dataset." Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner’s perspective, moving your data scientist career forward!