Theoretical Mechanics Of Biological Neural Networks


Download Theoretical Mechanics Of Biological Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theoretical Mechanics Of Biological Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Theoretical Mechanics of Biological Neural Networks


Theoretical Mechanics of Biological Neural Networks

Author: Ronald J. MacGregor

language: en

Publisher: Elsevier

Release Date: 2012-12-02


DOWNLOAD





Theoretical Mechanics of Biological Neural Networks presents an extensive and coherent discusson and formulation of the generation and integration of neuroelectric signals in single neurons. The approach relates computer simulation programs for neurons of arbitrary complexity to fundamental gating processes of transmembrance ionic fluxes of synapses of excitable membranes. Listings of representative computer programs simulating arbitrary neurons, and local and composite neural networks are included. - Develops a theory of dynamic similarity for characterising the firing rate sensitivites of neurons in terms of their characteristic anatomical and physiological parameters - Presents the sequential configuration theory - a theoretical presentation of coordinated firing patterns in entire neural population - Presents the outlines of mechanics for multiple interacting networks in composite systems

Information-Theoretic Aspects of Neural Networks


Information-Theoretic Aspects of Neural Networks

Author: P. S. Neelakanta

language: en

Publisher: CRC Press

Release Date: 2020-09-23


DOWNLOAD





Information theoretics vis-a-vis neural networks generally embodies parametric entities and conceptual bases pertinent to memory considerations and information storage, information-theoretic based cost-functions, and neurocybernetics and self-organization. Existing studies only sparsely cover the entropy and/or cybernetic aspects of neural information. Information-Theoretic Aspects of Neural Networks cohesively explores this burgeoning discipline, covering topics such as: Shannon information and information dynamics neural complexity as an information processing system memory and information storage in the interconnected neural web extremum (maximum and minimum) information entropy neural network training non-conventional, statistical distance-measures for neural network optimizations symmetric and asymmetric characteristics of information-theoretic error-metrics algorithmic complexity based representation of neural information-theoretic parameters genetic algorithms versus neural information dynamics of neurocybernetics viewed in the information-theoretic plane nonlinear, information-theoretic transfer function of the neural cellular units statistical mechanics, neural networks, and information theory semiotic framework of neural information processing and neural information flow fuzzy information and neural networks neural dynamics conceived through fuzzy information parameters neural information flow dynamics informatics of neural stochastic resonance Information-Theoretic Aspects of Neural Networks acts as an exceptional resource for engineers, scientists, and computer scientists working in the field of artificial neural networks as well as biologists applying the concepts of communication theory and protocols to the functioning of the brain. The information in this book explores new avenues in the field and creates a common platform for analyzing the neural complex as well as artificial neural networks.

Theory of Neural Information Processing Systems


Theory of Neural Information Processing Systems

Author: A.C.C. Coolen

language: en

Publisher: OUP Oxford

Release Date: 2005-07-21


DOWNLOAD





Theory of Neural Information Processing Systems provides an explicit, coherent, and up-to-date account of the modern theory of neural information processing systems. It has been carefully developed for graduate students from any quantitative discipline, including mathematics, computer science, physics, engineering or biology, and has been thoroughly class-tested by the authors over a period of some 8 years. Exercises are presented throughout the text and notes on historical background and further reading guide the student into the literature. All mathematical details are included and appendices provide further background material, including probability theory, linear algebra and stochastic processes, making this textbook accessible to a wide audience.