Theoretical Advances In Neural Computation And Learning


Download Theoretical Advances In Neural Computation And Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theoretical Advances In Neural Computation And Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Theoretical Advances in Neural Computation and Learning


Theoretical Advances in Neural Computation and Learning

Author: Vwani Roychowdhury

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly? Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines.

Algorithmic Learning Theory


Algorithmic Learning Theory

Author: Hiroki Arimura

language: en

Publisher: Springer Science & Business Media

Release Date: 2000-11-15


DOWNLOAD





This book constitutes the refereed proceedings of the 11th International Conference on Algorithmic Learning Theory, ALT 2000, held in Sydney, Australia in December 2000. The 22 revised full papers presented together with three invited papers were carefully reviewed and selected from 39 submissions. The papers are organized in topical sections on statistical learning, inductive logic programming, inductive inference, complexity, neural networks and other paradigms, support vector machines.

Algorithmic Learning Theory


Algorithmic Learning Theory

Author: Naoki Abe

language: en

Publisher: Springer

Release Date: 2003-06-30


DOWNLOAD





This volume contains the papers presented at the 12th Annual Conference on Algorithmic Learning Theory (ALT 2001), which was held in Washington DC, USA, during November 25–28, 2001. The main objective of the conference is to provide an inter-disciplinary forum for the discussion of theoretical foundations of machine learning, as well as their relevance to practical applications. The conference was co-located with the Fourth International Conference on Discovery Science (DS 2001). The volume includes 21 contributed papers. These papers were selected by the program committee from 42 submissions based on clarity, signi?cance, o- ginality, and relevance to theory and practice of machine learning. Additionally, the volume contains the invited talks of ALT 2001 presented by Dana Angluin of Yale University, USA, Paul R. Cohen of the University of Massachusetts at Amherst, USA, and the joint invited talk for ALT 2001 and DS 2001 presented by Setsuo Arikawa of Kyushu University, Japan. Furthermore, this volume includes abstracts of the invited talks for DS 2001 presented by Lindley Darden and Ben Shneiderman both of the University of Maryland at College Park, USA. The complete versions of these papers are published in the DS 2001 proceedings (Lecture Notes in Arti?cial Intelligence Vol. 2226).