The Mathematical Structure Of Stable Physical Systems

Download The Mathematical Structure Of Stable Physical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Mathematical Structure Of Stable Physical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Mathematical Structure of Stable Physical Systems

Author: Dr. Martin Concoyle & G.P. Coatmundi
language: en
Publisher: Trafford Publishing
Release Date: 2014
This book is an introduction to the simple math patterns used to describe fundamental, stable spectral-orbital physical systems (represented as discrete hyperbolic shapes), the containment set has many-dimensions, and these dimensions possess macroscopic geometric properties (which are also discrete hyperbolic shapes). Thus, it is a description which transcends the idea of materialism (ie it is higher-dimensional), and it can also be used to model a life-form as a unified, high-dimension, geometric construct, which generates its own energy, and which has a natural structure for memory, where this construct is made in relation to the main property of the description being, in fact, the spectral properties of both material systems and of the metric-spaces which contain the material systems, where material is simply a lower dimension metric-space, and where both material-components and metric-spaces are in resonance with the containing space. Partial differential equations are defined on the many metric-spaces of this description, but their main function is to act on either the, usually, unimportant free-material components (to most often cause non-linear dynamics) or to perturb the orbits of the, quite often condensed, material trapped by (or within) the stable orbits of a very stable hyperbolic metric-space shape.
The Mathematical Structure of Stable Physical Systems

Author: Dr. Martin Concoyle
language: en
Publisher: Trafford Publishing
Release Date: 2014-01-16
This book is an introduction to the simple math patterns used to describe fundamental, stable spectral-orbital physical systems (represented as discrete hyperbolic shapes), the containment set has many-dimensions, and these dimensions possess macroscopic geometric properties (which are also discrete hyperbolic shapes). Thus, it is a description which transcends the idea of materialism (ie it is higher-dimensional), and it can also be used to model a life-form as a unified, high-dimension, geometric construct, which generates its own energy, and which has a natural structure for memory, where this construct is made in relation to the main property of the description being, in fact, the spectral properties of both material systems and of the metric-spaces which contain the material systems, where material is simply a lower dimension metric-space, and where both material-components and metric-spaces are in resonance with the containing space. Partial differential equations are defined on the many metric-spaces of this description, but their main function is to act on either the, usually, unimportant free-material components (to most often cause non-linear dynamics) or to perturb the orbits of the, quite often condensed, material trapped by (or within) the stable orbits of a very stable hyperbolic metric-space shape.
Perturbing Material-Components on Stable Shapes

Author: Martin Concoyle Ph.D.
language: en
Publisher: Trafford Publishing
Release Date: 2014
This book is an introduction to the simple math patterns that can be used to describe fundamental, stable spectral-orbital physical systems (represented as discrete hyperbolic shapes, i.e., hyperbolic space-forms), the containment set has many dimensions, and these dimensions possess macroscopic geometric properties (where hyperbolic metric-space subspaces are modeled to be discrete hyperbolic shapes). Thus, it is a description that transcends the idea of materialism (i.e., it is higher-dimensional so that the higher dimensions are not small), and it is a math context can also be used to model a life-form as a unified, high-dimension, geometric construct that generates its own energy and which has a natural structure for memory where this construct is made in relation to the main property of the description being, in fact, the spectral properties of both (1) material systems and of (2) the metric-spaces, which contain the material systems where material is simply a lower dimension metric-space and where both material-components and metric-spaces are in resonance with (and define) the containing space.